-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrack.py
316 lines (248 loc) · 12.3 KB
/
track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import numpy as np
import cv2
import glob, os, sys, time, datetime
# TODO corners save when offline processing
ONLINE = True
CALIBRATE = False
RELATIVE_DESTINATION_PATH = str(datetime.date.today()) + '_distance/'
FPS = 60
THRESHOLD_WALL_VS_FLOOR = 80
THRESHOLD_ANIMAL_VS_FLOOR = 70
HD = 1280, 640
BGR_COLOR = {'red': (0,0,255),
'green': (127,255,0),
'blue': (255,127,0),
'yellow': (0,127,255),
'black': (0,0,0),
'white': (255,255,255)}
WAIT_DELAY = 1
perspectiveMatrix = dict()
croppingPolygon = np.array([[0,0]])
croppingPolygons = dict()
tetragons = []
name = ""
RENEW_TETRAGON = True
def counterclockwiseSort(tetragon):
tetragon = sorted(tetragon, key=lambda e: e[0])
tetragon[0:2] = sorted(tetragon[0:2], key=lambda e: e[1])
tetragon[2:4] = sorted(tetragon[2:4], key=lambda e: e[1], reverse=True)
return tetragon
# TODO pointlike tetragon moving instead drawing it by clicking
# mouse callback function for drawing a cropping polygon
def drawFloorCrop(event, x, y, flags, params):
global perspectiveMatrix, name, RENEW_TETRAGON
imgCroppingPolygon = np.zeros_like(params['imgFloorCorners'])
if event == cv2.EVENT_RBUTTONUP:
cv2.destroyWindow(f'Floor Corners for {name}')
if len(params['croppingPolygons'][name]) > 4 and event == cv2.EVENT_LBUTTONUP:
RENEW_TETRAGON = True
h = params['imgFloorCorners'].shape[0]
# delete 5th extra vertex of the floor cropping tetragon
params['croppingPolygons'][name] = np.delete(params['croppingPolygons'][name], -1, 0)
params['croppingPolygons'][name] = params['croppingPolygons'][name] - [h,0]
# Sort cropping tetragon vertices counter-clockwise starting with top left
params['croppingPolygons'][name] = counterclockwiseSort(params['croppingPolygons'][name])
# Get the matrix of perspective transformation
params['croppingPolygons'][name] = np.reshape(params['croppingPolygons'][name], (4,2))
tetragonVertices = np.float32(params['croppingPolygons'][name])
tetragonVerticesUpd = np.float32([[0,0], [0,h], [h,h], [h,0]])
perspectiveMatrix[name] = cv2.getPerspectiveTransform(tetragonVertices, tetragonVerticesUpd)
if event == cv2.EVENT_LBUTTONDOWN:
if len(params['croppingPolygons'][name]) == 4 and RENEW_TETRAGON:
params['croppingPolygons'][name] = np.array([[0,0]])
RENEW_TETRAGON = False
if len(params['croppingPolygons'][name]) == 1:
params['croppingPolygons'][name][0] = [x,y]
params['croppingPolygons'][name] = np.append(params['croppingPolygons'][name], [[x,y]], axis=0)
if event == cv2.EVENT_MOUSEMOVE and not (len(params['croppingPolygons'][name]) == 4 and RENEW_TETRAGON):
params['croppingPolygons'][name][-1] = [x,y]
if len(params['croppingPolygons'][name]) > 1:
cv2.fillPoly(
imgCroppingPolygon,
[np.reshape(
params['croppingPolygons'][name],
(len(params['croppingPolygons'][name]),2)
)],
BGR_COLOR['green'], cv2.LINE_AA)
imgCroppingPolygon = cv2.addWeighted(params['imgFloorCorners'], 1.0, imgCroppingPolygon, 0.5, 0.)
cv2.imshow(f'Floor Corners for {name}', imgCroppingPolygon)
def angle_cos(p0, p1, p2):
d1, d2 = (p0 - p1).astype('float'), (p2 - p1).astype('float')
return np.abs(np.dot(d1, d2) / np.sqrt(np.dot(d1, d1) * np.dot(d2, d2)))
def floorCrop(filename):
global perspectiveMatrix, tetragons, name, croppingPolygons
name = os.path.splitext(filename)[0]
cap = cv2.VideoCapture(filename)
h, w = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)), int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
# Take first non-null frame and find corners within it
ret, frame = cap.read()
while not frame.any():
ret, frame = cap.read()
frame = frame[:, w-h : w]
frameGray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
kernelSize = (5,5)
frameBlur = cv2.GaussianBlur(frameGray, kernelSize, 0)
retval, mask = cv2.threshold(frameBlur, THRESHOLD_WALL_VS_FLOOR, 255, cv2.THRESH_BINARY_INV)
contours, hierarchy = cv2.findContours(mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
tetragons = []
HALF_AREA = 0.5 * h * h
for contour in contours:
contourPerimeter = cv2.arcLength(contour, True)
hull = cv2.convexHull(contour)
contour = cv2.approxPolyDP(hull, 0.02 * contourPerimeter, True)
# If the contour is convex tetragon
# and its area is above a half of total frame area,
# then it's most likely the floor
if len(contour) == 4 and cv2.contourArea(contour) > HALF_AREA:
contour = contour.reshape(-1, 2)
max_cos = np.max([angle_cos(contour[i], contour[(i + 1) % 4], contour[(i + 2) % 4]) for i in range(4)])
if max_cos < 0.3:
tetragons.append(contour)
frameGray = cv2.cvtColor(frameGray, cv2.COLOR_GRAY2BGR)
imgSquare = np.zeros_like(frameGray)
cv2.fillPoly(imgSquare, tetragons, BGR_COLOR['red'], cv2.LINE_AA)
# cv2.add(frameGray, imgSquare / 2, frameGray)
cv2.drawContours(frameGray, tetragons, -1, BGR_COLOR['red'], 2, cv2.LINE_AA)
if len(tetragons) > 0:
tetragonVertices = tetragons[0]
else:
tetragonVertices = np.float32([[0,0], [0,h], [h,h], [h,0]])
# Sort the cropping tetragon vertices according to the following order:
# [left,top], [left,bottom], [right,bottom], [right,top]
tetragonVertices = counterclockwiseSort(tetragonVertices)
croppingPolygons[name] = tetragonVertices
tetragonVertices = np.float32(tetragonVertices)
tetragonVerticesUpd = np.float32([[0,0], [0,h], [h,h], [h,0]])
perspectiveMatrix[name] = cv2.getPerspectiveTransform(np.float32(croppingPolygons[name]), tetragonVerticesUpd)
frame = cv2.warpPerspective(frame, perspectiveMatrix[name], (h,h))
imgFloorCorners = np.hstack([frame, frameGray])
cv2.imshow(f'Floor Corners for {name}', imgFloorCorners)
cv2.setMouseCallback(
f'Floor Corners for {name}',
drawFloorCrop,
{'imgFloorCorners': imgFloorCorners, 'croppingPolygons': croppingPolygons},
)
k = cv2.waitKey(0)
if k == 27:
sys.exit()
cv2.destroyWindow(f'Floor Corners for {name}')
return tetragonVertices, perspectiveMatrix[name]
def trace(filename):
global perspectiveMatrix, croppingPolygons, tetragons, name, WAIT_DELAY
# croppingPolygons[name] = np.array([[0,0]])
name = os.path.splitext(filename)[0]
cap = cv2.VideoCapture(filename)
h, w = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)), int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
# Take first non-null frame and find corners within it
ret, frame = cap.read()
while not frame.any():
ret, frame = cap.read()
background = frame.copy()
i_frame = 1
n_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
while frame is not None:
ret, frame = cap.read()
if frame is None:
break
background = cv2.addWeighted(frame, 0.5 - i_frame / n_frames, background, 0.5 + i_frame / n_frames, 0)
i_frame += 1
cap = cv2.VideoCapture(filename)
ret, frame = cap.read()
frame = frame[:, w-h : w]
# floorCrop(filename)
video = cv2.VideoWriter(f'{RELATIVE_DESTINATION_PATH}timing/{name}_trace.avi',
cv2.VideoWriter_fourcc(*'X264'),
FPS, HD, cv2.INTER_LINEAR)
imgTrack = np.zeros_like(frame)
start = time.time()
distance = _x = _y = 0
while frame is not None:
ret, frame = cap.read()
if frame is None: # not logical
break
frameColor = frame[:, w-h : w].copy()
frame = cv2.subtract(frame, background)
t = cap.get(cv2.CAP_PROP_POS_MSEC) / 1000.
frame = frame[:, w-h : w]
if len(croppingPolygons[name]) == 4:
cv2.drawContours(frameColor, [np.reshape(croppingPolygons[name], (4,2))], -1, BGR_COLOR['red'], 2, cv2.LINE_AA)
else:
cv2.drawContours(frameColor, tetragons, -1, BGR_COLOR['red'], 2, cv2.LINE_AA)
frame = cv2.warpPerspective(frame, perspectiveMatrix[name], (h,h))
frameGray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
kernelSize = (25,25)
frameBlur = cv2.GaussianBlur(frameGray, kernelSize, 0)
_, thresh = cv2.threshold(frameBlur, THRESHOLD_ANIMAL_VS_FLOOR, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
if len(contours) < 1: # TODO more pythonic way of the check
continue
# Find a contour with the biggest area (animal most likely)
contour = contours[np.argmax(list(map(cv2.contourArea, contours)))]
M = cv2.moments(contour)
if M['m00'] == 0:
continue
x = int(M['m10'] / M['m00'])
y = int(M['m01'] / M['m00'])
if _x == 0 and _y == 0:
_x = x
_y = y
distance += np.sqrt(((x - _x) / float(h))**2 + ((y - _y) / float(h))**2)
if ONLINE:
# Draw the most acute angles of the contour (tail/muzzle/paws of the animal)
hull = cv2.convexHull(contour)
imgPoints = np.zeros(frame.shape,np.uint8)
for i in range(2, len(hull) - 2):
if np.dot(hull[i][0] - hull[i-2][0], hull[i][0] - hull[i+2][0]) > 0:
imgPoints = cv2.circle(imgPoints, (hull[i][0][0],hull[i][0][1]), 5, BGR_COLOR['yellow'], -1, cv2.LINE_AA)
# Draw a contour and a centroid of the animal
cv2.drawContours(imgPoints, [contour], 0, BGR_COLOR['green'], 2, cv2.LINE_AA)
imgPoints = cv2.circle(imgPoints, (x,y), 5, BGR_COLOR['black'], -1)
# Draw a track of the animal
# imgTrack = cv2.add(np.zeros_like(imgTrack), cv2.line(imgTrack, (x,y), (_x,_y),
# (255, 127, int(cap.get(cv2.CAP_PROP_POS_AVI_RATIO) * 255)), 1, cv2.LINE_AA))
imgTrack = cv2.addWeighted(np.zeros_like(imgTrack), 0.85, cv2.line(imgTrack, (x,y), (_x,_y),
(255, 127, int(cap.get(cv2.CAP_PROP_POS_AVI_RATIO) * 255)), 1, cv2.LINE_AA), 0.98, 0.)
imgContour = cv2.add(imgPoints, imgTrack)
frame = cv2.bitwise_and(frame, frame, mask=thresh)
frame = cv2.addWeighted(frame, 0.4, imgContour, 1.0, 0.)
cv2.putText(frame, 'Distance ' + str('%.2f' % distance),
(190,420), cv2.FONT_HERSHEY_DUPLEX, 1, BGR_COLOR['white'])
cv2.putText(frame, 'Time ' + str('%.0f sec' % (cap.get(cv2.CAP_PROP_POS_MSEC) / 1000.)),
(200,450), cv2.FONT_HERSHEY_DUPLEX, 1, BGR_COLOR['white'])
cv2.circle(frame, (x,y), 5, BGR_COLOR['black'], -1, cv2.LINE_AA)
layout = np.hstack((frame, frameColor))
cv2.imshow(f'Open Field Trace of {name}', layout)
video.write(cv2.resize(layout, HD))
k = cv2.waitKey(WAIT_DELAY) & 0xff
if k == 27:
break
if k == 32:
if WAIT_DELAY == 1:
WAIT_DELAY = 0 # pause
else:
WAIT_DELAY = 1 # play as fast as possible
_x = x
_y = y
cv2.destroyAllWindows()
cap.release()
if ONLINE:
video.release()
cv2.imwrite(RELATIVE_DESTINATION_PATH + 'traces/' + name + '_[distance]=%.2f' % distance +
'_[time]=%.1fs' % t + '.png', cv2.resize(imgTrack, (max(HD), max(HD))))
print(filename + '\tdistance %.2f\t' % distance + 'processing/real time %.1f' % float(time.time() - start) + '/%.1f s' % t)
file.write(name + ',%.2f' % distance + ',%.1f\n' % t)
file.close()
if len(sys.argv) > 1 and '--online' in sys.argv:
ONLINE = True
if not os.path.exists(RELATIVE_DESTINATION_PATH + 'traces'):
os.makedirs(RELATIVE_DESTINATION_PATH + 'traces')
if not os.path.exists(RELATIVE_DESTINATION_PATH + 'timing'):
os.makedirs(RELATIVE_DESTINATION_PATH + 'timing')
file = open(RELATIVE_DESTINATION_PATH + 'distances.csv', 'w')
file.write('animal,distance [unit of the box side],run time [seconds]\n')
file.close()
for filename in glob.glob('*.mov'):
floorCrop(filename)
for filename in glob.glob('*.mov'):
file = open(RELATIVE_DESTINATION_PATH + 'distances.csv', 'a')
trace(filename)