-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvalidate.R
376 lines (292 loc) · 12.3 KB
/
validate.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
#' @title Check horizon depths for errors
#'
#' @description This function inspects a series of horizon depths for common errors:
#'
#' 1. bottom depth is shallower than the top depth
#' 2. equal top and bottom depths
#' 3. missing top or bottom depths (e.g. `NA`)
#' 4. gap or overlap between adjacent horizons
#'
#' @param object data.frame or SoilProfileCollection object to check
#'
#' @param id pedon id column name, only necessary if object is a data.frame. Default: `peiid`
#'
#' @param top horizon top depth column name, only necessary if object is a data.frame. Default: `hzdept`
#'
#' @param bot horizon bottom depth column name, only necessary if object is a data.frame. Default: `hzdepb`
#'
#' @param append_checks logical indicating whether the validation check should be appended to the input object. Default: `TRUE`
#'
#' @param pad_bot logical indicating whether to pad the bottom horizon with the top + 1-cm if the `top == bot` or the bot is `NA`, prior to checking for errors and applying `rmHzError`. Default: `FALSE`
#'
#' @param rmHzErrors logical indicating whether to remove pedons with horizon errors from the output. Default: `FALSE`
#'
#' @details This function performs several validations listed above to check horizon depths for errors. Compared to \code{checkHzDepthLogic}, it is slightly faster, reports more intuitive results (e.g. TRUE = pass), reports the results at the horizon level rather than the pedon, appends the results to the horizon table, exports the results `aqp.env`, and incorporates options to pad bottom horizon depths with +1cm, and `rmHzErrors`. It will be useful to prune a lot of house cleaning code that occurs in `soilDB`.
#'
#' @return A `data.frame` or `SoilProfileCollection` appended with new `check_` columns appended if `append_check = TRUE`.
#'
#' - `valid_dep_order`: `TRUE` if `top < bot`
#' - `valid_dep_diff`: `TRUE` if `top != bot`
#' - `valid_dep_complete`: `TRUE` if `complete.cases(top, bot)`
#' - `valid_dep_overlap`: `TRUE` if no gaps or overlaps in adjacent horizons
#' - `valid_dep_all`: `TRUE` if all valid_ are `TRUE`
#'
#' @export
#' @author S.M. Roecker, D.E. Beaudette, A.G. Brown
#' @examples
#'
#' ## sample data
#'
#' data(sp3)
#'
#' # these data should be clean
#' depths(sp3) <- id ~ top + bottom
#' sp3_val <- validate_depths(sp3)
#'
#' head(sp3_val)
#'
#' # sample data with errors
#' test <- data.frame(peiid = 1:6,
#' hzdept = c(0, 2, 10, 25, 50, 100),
#' hzdepb = c(0, 11, 25, 50, 100, NA)
#' )
#'
#' test_val <- validate_depths(test)
#'
validate_depths <- function (object, id = "peiid", top = "hzdept", bot = "hzdepb", append_checks = FALSE, order = FALSE, pad_bot = FALSE, rmHzErrors = FALSE) {
# test inputs ----
# argument sanity check
test_spc <- inherits(object, 'SoilProfileCollection')
test_df <- inherits(object, 'data.frame')
if (! any(test_spc, test_df)) {
stop("the input must be either a SoilProfileCollection or data.frame")
}
# standardize object ----
if (test_spc) {
df <- horizons(object)
id <- idname(object)
hzid <- hzidname(object)
top <- horizonDepths(object)[1]
bot <- horizonDepths(object)[2]
} else {
df <- object
hzid <- "hzid"
df[hzid] <- 1:nrow(df)
}
# more tests
stopifnot(is.numeric(df[[top]]) & is.numeric(df[[bot]]))
# vars <- c(id = "pedon_key", top = "hzn_top", bot = "hzn_bot")
var_names <- c(id = id, top = top, bot = bot)
if (! all(var_names %in% names(df))) {
stop("all arguments must match df names")
}
# standardize df ----
idx_names <- sapply(var_names, function(x) which(names(df) == x))
names(df)[idx_names] <- names(var_names)
df$rn <- 1:nrow(df)
# df$id <- as.character(df$id)
# df$top <- as.integer(df$top)
# df$bot <- as.integer(df$bot)
if (order == TRUE) {
df <- df[order(df$id, df$top, df$bot), ]
}
# pad bot where top == bottom ----
valid_dep_diff <- as.integer(df$top) != as.integer(df$bot) # should be TRUE
if (pad_bot == TRUE & any(!valid_dep_diff, na.rm = TRUE)) {
df$bot <- ifelse(! valid_dep_diff, df$bot + 1, df$bot)
message(paste('top/bottom depths equal, adding 1cm to bottom depth ... [', sum(valid_dep_diff, na.rm = TRUE), ' horizons]', sep = '')
)
}
# pad bottom where bot is missing ----
NA_dep_bottom <- !is.na(df$top) & is.na(df$bot) # should be TRUE
if (pad_bot == TRUE & any(NA_dep_bottom, na.rm = TRUE)) {
df$bot <- ifelse(NA_dep_bottom, df$top + 1, df$bot)
message(paste('replacing missing lower horizon depths with top depth + 1cm ... [',
sum(NA_dep_bottom, na.rm = TRUE), ' horizons]', sep='')
)
}
# check horizon depths ----
df <- transform(df,
valid_dep_order = top < bot, # should be TRUE
valid_dep_diff = as.integer(top) != as.integer(bot), # should be TRUE
valid_dep_complete = complete.cases(top, bot), # should be TRUE
NA_dep_bottom = !is.na(top) & is.na(bot) # should be TRUE
)
df$valid_dep_overlap <-
(as.integer(df$top) == as.integer(c(NA, df$bot[-nrow(df)]))) ==
ifelse(as.character(df$id) == as.character(c(NA, df$id[-nrow(df)])), TRUE, NA) # should be TRUE
df$valid_dep_all <- df$valid_dep_order & df$valid_dep_diff & df$valid_dep_complete & (df$valid_dep_overlap | is.na(df$valid_dep_overlap))
# rmHzErrors ----
if (rmHzErrors == TRUE & any(!df$valid_dep_all, na.rm = TRUE)) {
ids <- unique(df$id)
bad_ids <- unique(df$id[df$valid_dep_all == FALSE])
good_ids <- ids[!ids %in% bad_ids]
message(paste("removing", length(bad_ids), "pedons", "with", sum(!df$valid_dep_all, na.rm = TRUE), "horizon errors"))
df <- df[df$id %in% good_ids, ]
if (test_spc) {
idx <- which(site(object)[[id]] %in% good_ids)
object <- object[idx, ]
}
}
# append_checks ----
assign('bad.pedon.ids',
value = unique(df$id[!df$valid_dep_all]),
envir = aqp.env
)
assign("bad.horizons",
value = df[!df$valid_dep_all, c("id", "top", "bot")],
envir = aqp.env
)
assign('top.bottom.equal',
value = unique(df$id[!df$valid_dep_diff]),
envir = aqp.env
)
assign("missing.horizon.depths",
value = unique(df$id[!df$valid_dep_complete]),
envir = aqp.env
)
# undo standardization ----
names(df)[idx_names] <- var_names
df <- df[order(df$rn), ]
df$rn <- NULL
df$NA_dep_bottom <- NULL
if (append_checks == FALSE) {
df <- df[c(id, hzid, top, bot, names(df)[grepl("valid_", names(df))])]
}
# rebuild SPC
if (test_spc & append_checks == TRUE) {
horizons(object) <- df[c(id, hzid, "valid_dep_order", "valid_dep_diff", "valid_dep_complete", "valid_dep_overlap", "valid_dep_all")]
}
# return output ----
if (test_spc) {
return(object) # TODO: this is protection from missing-data/ID offset
} else {
return(df)
}
}
fix_o_depths <- function(object, id = "peiid", top = "hzdept", bot = "hzdepb", hzname = "hzname", pat = "^O|^\\^O|^\\*O|^\\dO") {
test_df <- inherits(object, 'data.frame')
df <- object
# more tests
stopifnot(is.numeric(df[[top]]) & is.numeric(df[[bot]]))
# vars <- c(id = "peiid", top = "hzdept", bot = "hzdepb", hzname = "hzname")
var_names <- c(id = id, top = top, bot = bot, hzname = hzname)
if (! all(var_names %in% names(df))) {
stop("all arguments must match df names")
}
# standardize df ----
idx_names <- sapply(var_names, function(x) which(names(df) == x))
names(df)[idx_names] <- names(var_names)
df$rn <- 1:nrow(df)
# test horizons
test <- validate_depths(object = df, id = "id", top = "top", bot = "bot", order = FALSE, append_checks = FALSE)
idx_pat <- grepl(pat, df$hzname)
# reverse O horizon depths, subset, and reorder
idx <- which(idx_pat & ! test$valid_dep_order)
vars <- c("top", "bot")
df_sub <- df[idx, ]
df_sub[, vars] <- df_sub[, vars] * -1
df_sub <- df_sub[order(df_sub$id, df_sub$top, df_sub$bot), ]
# check horizon depths ----
df_sub <- transform(df_sub,
valid_dep_order = top > bot & top < 0 # should be TRUE
)
df_sub$valid_dep_overlap <- with(df_sub,
(as.integer(top) == as.integer(c(NA, bot[-nrow(df_sub)]))) ==
ifelse(as.character(id) == as.character(c(NA, id[-nrow(df_sub)])), TRUE, NA) # should be TRUE
)
}
#' @title Dissolving horizon boundaries by grouping variables
#'
#' @description This function dissolves or combines horizons share have a common set of grouping variables. It only combines those horizon records that are sequential (e.g. share a horizon boundary). Thus, it can be used to identify discontinuities in the grouping variables along a profile.
#'
#' @param object either a \code{data.frame}
#' @param by the column names, to be used as grouping variables, within the object.
#' @param id the column name of the pedon ID within the object.
#' @param top the column name of the horizon top depth within the object.
#' @param bot the column name of the horizon bottom depth in the object.
#' @param order logical: indicating whether or not to order the object by the id, top, and bot columns.
#' #'
#' @details This function assumes the profiles and horizons within the object follow the logic defined by \code{checkHzDepthLogic} (e.g. records are ordered sequentially by id, top, and bot and without gaps). If the records are not order, set the argument \code{order = TRUE}.
#'
#' @return A \code{data.frame} with the original id, by grouping variables, and non-consecutive horizon depths.
#'
#' @author Stephen Roecker
#'
#' @seealso \code{\link{checkHzDepthLogic}}
#'
#' @export
#'
#' @examples
#'
#' # example data
#' data(jacobs2000)
#'
#' spc <- jacobs2000
#'
#' spc$dep_5 <- spc$depletion_pct >=5
#' spc$genhz <- generalize.hz(spc$name, c("A", "E", "B", "C"), c("A", "E", "B", "C"))
#'
#' test <- dissolve_hz(horizons(spc), by = c("genhz", "dep_5"), id = "id", top = "top", bot = "bottom")
#'
dissolve_hz <- function(object, by = NULL, collapse = FALSE, id = "peiid", top = "hzdept", bot = "hzdepb", order = FALSE) {
# id = "peiid"; top = "hzdept"; bot = "hzdepb"
# test inputs ----
# argument sanity check
# test_spc <- inherits(object, 'SoilProfileCollection')
# check that object & by are the right class
test_object <- inherits(object, "data.frame")
test_by <- inherits(by, "character")
if (! any(test_object | test_by)) {
stop("the object argument must be a data.frame, and by a character")
}
# check that by is not NULL
if (is.null(by)) stop("the by argument must not be NULL")
# check that collapse is a logical of length 1
if (class(collapse) != "logical" & length(collapse) == 1) {
stop("the collapse argument must be logical and a length of one")
}
# check that the column names exisit within the object
var_names <- c(id = id, top = top, bot = bot, by)
if (! all(var_names %in% names(object))) {
stop("all arguments must match object names")
}
# check that "by" are characters or convert
if (any(! "character" %in% sapply(df[by], class))) {
message("non-character grouping variables are being converted to characters")
df[by] <- lapply(df[by], as.character)
}
# standardize inputs ----
df <- object
idx_names <- sapply(var_names[1:3], function(x) which(names(df) == x))
names(df)[idx_names] <- names(var_names)[1:3]
# valid
# vd_idx <- validate_depths(df, id = "id", top = "hzdept", bot = "hzdepb")
if (order == TRUE) {
df <- df[order(df$id, df$top, df$bot), ]
}
if (collapse == TRUE) {
by_co <- paste(by, collapse = " & ")
df[by_co] <- apply(df[by], 1, paste, collapse = " & ")
by <- by_co
}
# var thickness ----
var_dep <- lapply(by, function(x) {
con_bot <- rle( paste(df$id, df[, x]))$length
con_top <- rle(rev(paste(df$id, df[, x])))$length
bot_idx <- cumsum(con_bot)
top_idx <- cumsum(con_top)
vd <- data.frame(
id = df[bot_idx, "id"],
top = rev(rev(df$top)[top_idx]),
bot = df[bot_idx, "bot"],
var = x,
val = df[bot_idx, x]
)
return(vd)
})
var_dep <- do.call("rbind", var_dep)
# undo standardization ----
names(var_dep)[1:3] <- var_names[1:3]
return(var_dep)
}