forked from benadida/scantegrity-audit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeeting2.py
149 lines (111 loc) · 6.18 KB
/
meeting2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
"""
The meeting two verification
Usage:
python meeting2.py <DATA_PATH>
data path should NOT have a trailing slash
"""
# core imports
import sys, base64
import base
import data
import filenames
if len(sys.argv) > 2:
# Note that the path provided as the second argument must be relative to the data directory, not absolute
filenames.set_meeting_two_random_data(sys.argv[2])
# use the meeting1 data structures too
import meeting1
# pull in certain data structures from meeting1
election, p_table, partitions = meeting1.election, meeting1.p_table, meeting1.partitions
# second meeting
meeting_two_in_xml = base.file_in_dir(base.DATA_PATH, filenames.MEETING_TWO_IN, 'Meeting Two In')
meeting_two_out_xml = base.file_in_dir(base.DATA_PATH, filenames.MEETING_TWO_OUT, "Meeting Two Out")
meeting_two_out_commitments_xml = base.file_in_dir(base.DATA_PATH, filenames.MEETING_TWO_OUT_COMMITMENTS, "Meeting Two Out Commitments")
meeting_two_random_data = base.file_in_dir(base.DATA_PATH, filenames.MEETING_TWO_RANDOM_DATA, "Random Data for Meeting Two Challenges", xml=False, correct_windows=False)
# get the challenges
challenge_p_table = data.PTable()
challenge_p_table.parse(meeting_two_in_xml.find('challenges/print'))
# get the response
response_p_table, response_partitions = data.parse_database(meeting_two_out_xml)
challenge_row_ids = challenge_p_table.rows.keys()
def verify_open_p_and_d_tables(election, committed_p_table, committed_partitions, open_p_table, open_partitions):
# check P table commitments
for row in open_p_table.rows.values():
if not committed_p_table.check_full_row(row, election.constant):
return False
# Now we go through the partitions, the d tables within each partition,
# and we look at the rows that are revealed. As we do this, we'll also
# spot check that the permutations in a given d_table row match the p_table rows revealed
# first we get the partition-and-question map for this election, which
# is effectively a tree representation of how the questions are grouped
# in partitions, with each leaf being the number of answers for that given question.
partition_map = election.partition_map
# the list of p table rows that are opened up
p_table_row_ids = sorted([r['id'] for r in open_p_table.rows.values()])
# loop through partitions
for p_id, partition in committed_partitions.iteritems():
# loop through d tables for that partition
for d_table_id, d_table in partition.iteritems():
# get the corresponding response D table
response_d_table = open_partitions[p_id][d_table_id]
# for efficiency of lookup, so we don't have to look up D-table rows by p-table row ID
# (which we haven't indexed), we check that
# (1) the responses are correct according to the commitments
# (2) the list of p_id rows in each response set matches the challenge row IDs
# (1) reveals match
for row_id, response_row in response_d_table.rows.iteritems():
if not d_table.check_full_row(p_id, d_table_id, response_row, election.constant):
return False
# (2) list of p_ids matches
if p_table_row_ids != sorted([r['pid'] for r in response_d_table.rows.values()]):
return False
# (3) permutations
for row_id, response_row in response_d_table.rows.iteritems():
# perms contains the d2, d3, and d4 fields, each of which is a list of permutations,
# so we have a list of lists of permutations
perms = response_d_table.get_permutations_by_row_id(row_id, partition_map[p_id])
d_perm_left = [data.Permutation(p) for p in perms[0]]
d_perm_right = [data.Permutation(p) for p in perms[2]]
p_row_id = response_d_table.rows[row_id]['pid']
# get the corresponding P table permutation subset
# P also has two permutation fields, each of which is a list of permutations
# once parsed, an additional layer is inserted, the index by partition_id
p_perms_full = open_p_table.get_permutations_by_row_id(p_row_id, partition_map)
p_perm_1 = [data.Permutation(perms) for perms in p_perms_full[0][p_id]]
p_perm_2 = [data.Permutation(perms) for perms in p_perms_full[1][p_id]]
# on the d table, just d2 then d4 to go from coded to decoded
d_composed = data.compose_lists_of_permutations(d_perm_left, d_perm_right)
# the composition of the print tables is p_2 o p_1_inv to go from coded to decoded
p_composed = data.compose_lists_of_permutations(p_perm_2, [~p for p in p_perm_1])
if d_composed != p_composed:
return False
# if we make it to here, it's good
return True
# actual meeting two verifications
def verify(output_stream):
p_table_permutations = {}
# check the generation of the challenge rows
# we assume that the length of the challenge list is the right one
challenge_row_ids_ints = set([int(c) for c in challenge_row_ids])
challenges_match_randomness = False
seed = meeting_two_random_data + election.constant
regenerate_row_ids_ints = set(base.generate_random_int_list(seed, election.num_ballots, len(challenge_row_ids)))
if challenge_row_ids_ints == regenerate_row_ids_ints:
challenges_match_randomness = True
else:
print "Challenges Don't Match Randomness:"
print " challenge_row_ids_ints: %s" % challenge_row_ids_ints
print " generate_random_int_list: %s" % regenerate_row_ids_ints
print " diff: %s" % (regenerate_row_ids_ints ^ challenge_row_ids_ints)
import pdb; pdb.set_trace()
# check that the open P table rows match the challenge
assert sorted(challenge_row_ids) == sorted([r['id'] for r in response_p_table.rows.values()]), "challenges don't match revealed row IDs in P table"
# check that the P and D tables are properly revealed
assert verify_open_p_and_d_tables(election, p_table, partitions, response_p_table, response_partitions), "bad reveal of P and D tables"
print """Election ID: %s
Meeting 2 Successful
%s ballots challenged and answered successfully.
Challenges Match Randomness? %s
%s
""" % (election.spec.id, len(challenge_row_ids), str(challenges_match_randomness).upper(), base.fingerprint_report())
if __name__ == '__main__':
verify(sys.stdout)