-
Notifications
You must be signed in to change notification settings - Fork 20
/
experiments.py
293 lines (255 loc) · 12.3 KB
/
experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
from darch.base import *
from darch.modules import *
from darch.initializers import *
import darch.datasets as ds
import darch.evaluators as ev
import darch.searchers as srch
import search_spaces as srch_sp
from pprint import pprint
import pickle
import dill
import os
import sys
# search space for searching over hyperparameters with two modes:
# a lighter one and a more extensive one.
def get_hyperparam_search_space(hps_type):
# 2 * 8 * 2 * 4 = 128 for light
if hps_type == "light":
lr_inits = list( np.logspace(-2, -7, num=8) )
rate_mults = [0.1, 0.5]
rate_pats = [4, 8, 16, 32]
# 2 * 32 * 8 * 8 = 4096 for heavy
elif hps_type == "heavy":
lr_inits = list( np.logspace(-2, -7, num=32) )
rate_mults = list( np.logspace(-2, np.log10(0.9), num=8) )
rate_pats = range(4, 33, 4)
else:
raise ValueError
return UserHyperparams(['optimizer_type',
'learning_rate_init',
'rate_mult',
'rate_patience',
'stop_patience',
'learning_rate_min' ],
[['adam', 'sgd_mom'],
lr_inits,
rate_mults,
rate_pats,
[64],
[1e-9] ])
class CustomEvaluator:
"""Custom evaluator whose performance depends on the values of certain
hyperparameters specified in the hyperparameter module. Hyperparameters that
we do not expect to set this way, will take default values.
"""
def __init__(self, train_dataset, val_dataset, test_dataset, in_d, nclasses,
max_minutes_per_model, model_path, output_to_terminal,
user_hyperparams_scope_name, args):
self.train_dataset = train_dataset
self.val_dataset = val_dataset
self.test_dataset = test_dataset
self.in_d = in_d
self.nclasses = nclasses
self.max_minutes_per_model = max_minutes_per_model
self.model_path = model_path
self.output_to_terminal = output_to_terminal
self.user_hyperparams_scope_name = user_hyperparams_scope_name
self.args = args
def eval_model(self, b):
"""Extract parameters from a UserHyperparams module and uses then to
udpate the values of certain hyperparameters of the evaluator. This
code is still very much based on ClassifierEvaluator.
"""
### this part is AWFUL
# NOTE: I'm breaking encapsulation here for now.
if self.args['bisect_search_space']:
# has a ChoiceBisection, followed by Concat [UserHyperparams, b_search]
b_hp, b_search = b.b.bs
else:
# just the concat module
b_hp, b_search = b.bs
b_hp.compile(None, None, None)
hpsc_name = self.user_hyperparams_scope_name
order = b_hp.scope.s[hpsc_name]['hyperp_names']
vals = b_hp.scope.s[hpsc_name]['hyperp_vals']
hps = dict(zip(order, vals))
evaluator = ev.ClassifierEvaluator(train_dataset=self.train_dataset,
val_dataset=self.val_dataset,
test_dataset=self.test_dataset,
in_d=self.in_d,
nclasses=self.nclasses,
training_epochs_max=int(1e6),
time_minutes_max=self.max_minutes_per_model,
display_step=1,
stop_patience=hps['stop_patience'], ###
rate_patience=hps['rate_patience'], ###
batch_patience=int(1e6),
save_patience=2,
rate_mult=hps['rate_mult'], ###
optimizer_type=hps['optimizer_type'], ###
learning_rate_init=hps['learning_rate_init'], ###
learning_rate_min=hps['learning_rate_min'], ###
batch_size_init=64,
model_path=self.model_path,
output_to_terminal=self.output_to_terminal)
return evaluator.eval_model(b_search)
# loads the data.
def load_data(args):
# information about the cifar-10
in_d = (32, 32, 3)
nclasses = 10
# options for data augmentation
trans_height = 32
trans_width = 32
p_flip = 0.5
pad_size = 4
# load cifar
(Xtrain, ytrain, Xval, yval, Xtest, ytest) = ds.load_cifar10(
data_dir='data/cifar10/cifar-10-batches-py/',
flatten=False,
one_hot=True,
normalize_range=False,
whiten_pixels=True,
border_pad_size=pad_size)
# augment data if the flag is set
augment_train_fn = ds.get_augment_cifar_data_train(trans_height, trans_width, p_flip)
augment_eval_fn = ds.get_augment_cifar_data_eval(trans_height, trans_width)
in_d = (trans_height, trans_width, 3)
# wrap data into a InMemoryDataset object
train_dataset = ds.InMemoryDataset(Xtrain, ytrain, True, augment_train_fn)
val_dataset = ds.InMemoryDataset(Xval, yval, False, augment_eval_fn)
test_dataset = ds.InMemoryDataset(Xtest, ytest, False, augment_eval_fn)
return (train_dataset, val_dataset, test_dataset, in_d, nclasses)
# may need some extra information for the models.s
# the different experiments are simply using different time limits.
def get_search_space(args):
in_d = (32, 32, 3)
num_classes = 10
ss = {'tfrefconv' : srch_sp.tfref_convnet_ss0(num_classes),
'resnet' : srch_sp.resnet_ss0(num_classes),
# 'allconv' : srch_sp.allconvnet_cifar10_ss0(num_classes, in_d),
# 'allconv2' : srch_sp.allconvnet_cifar10_ss1(in_d),
'deepconv' : srch_sp.deepconv_ss0(num_classes) }
b_search = ss[ args['search_space_type'] ]
# add hyperparameters to make sure that it is working
b_hp = get_hyperparam_search_space(args['search_over_hyperparams_type'])
b_search = Concat([b_hp, b_search])
# if bissecting the space, adds a bisection module.
if args['bisect_search_space']:
b_search = ChoiceBisection(b_search)
return b_search
def save_checkpoint(out_path, args, searcher, b_search, scores, hists):
with open(out_path, 'wb') as fp:
randgen_state = np.random.get_state()
d = {'args' : args, 'searcher' : searcher, 'b_search' : b_search,
'scores' : scores, 'hists' : hists, 'randgen_state' : randgen_state }
pickle.dump(d, fp)
def load_checkpoint(out_path):
with open(out_path, 'rb') as fp:
d = pickle.load(fp)
return (d['args'], d['searcher'], d['b_search'],
d['scores'], d['hists'], d['randgen_state'])
def get_initial_state(args):
# create the path if it does not exist.
model_path = os.path.join(args['output_folder'], args['experiment_name'] + ".ckpt")
out_path = os.path.join(args['output_folder'], args['experiment_name'] + '.pkl')
args['out_path'] = out_path
args['model_path'] = model_path
# checking if folder creation is necessary.
if not os.path.isdir(args['output_folder']):
os.makedirs(args['output_folder'])
# either load the initial state from the checkpoint or create it.
if os.path.exists(out_path):
print "Resuming from existing checkpoint for %s." % args['experiment_name']
(ckp_args, searcher, b_search, scores, hists, randgen_state) = load_checkpoint(out_path)
np.random.set_state(randgen_state)
assert frozenset(ckp_args.items()) == frozenset(args.items())
else:
print "Model seach started for %s." % args['experiment_name']
in_d = (32, 32, 3)
b_search = get_search_space(args)
if args['searcher_type'] == 'rand':
searcher = srch.RandomSearcher(b_search, in_d)
elif args['searcher_type'] == 'mcts' or args['searcher_type'] == 'mcts_bi':
searcher = srch.MCTSearcher(b_search, in_d, 0.5)
elif args['searcher_type'] == 'smbo':
searcher = srch.SMBOLinearSearcher(b_search, in_d, ngram_maxlen=5,
thres=3, lamb_ridge=1.0e3)
else:
raise ValueError
scores = []
hists = []
np.random.seed(args['random_seed'])
# if the first time that I'm looking at experiments for this,
# I will plot the args and the search space at the terminal.
pprint( args, width=1)
print
pprint( b_search.repr_program() , width=40, indent=2)
print
return searcher, b_search, scores, hists
# max_evals is used to limit the total time that the process will take in the
# case where I'm running in a server that has limit on the time per job.
def run_searcher_with_checkpointing(args):
(searcher, b_search, scores, hists) = get_initial_state(args)
# load data and instantiate evaluator.
(train_dataset, val_dataset, test_dataset, in_d, nclasses) = load_data(args)
evaluator = CustomEvaluator(train_dataset=train_dataset,
val_dataset=val_dataset,
test_dataset=test_dataset,
in_d=in_d,
nclasses=nclasses,
max_minutes_per_model=args['max_minutes_per_model'],
model_path=args['model_path'],
output_to_terminal=True,
args=args,
user_hyperparams_scope_name='UserHyperparams-0')
# remaining samples given the checkpoint.
num_samples_rem = min(
args['max_evals_per_process_run'],
args['num_samples'] - len(scores))
# run for the samples remaining for this round.
for _ in xrange(num_samples_rem):
if args['searcher_type'] == 'rand':
(new_scores, new_hists) = srch.run_random_searcher(evaluator, searcher,
num_models=1, output_to_terminal=True)
elif args['searcher_type'] == 'mcts' or args['searcher_type'] == 'mcts_bi':
(new_scores, new_hists) = srch.run_mcts_searcher(evaluator, searcher,
num_models=1, output_to_terminal=True)
elif args['searcher_type'] == 'smbo':
(new_scores, new_hists) = srch.run_smbo_searcher(evaluator, searcher,
nsamples_start=0, nsamples_after=1, nsamples_epoch=50,
refit_interval=1, explore_prob=0.25, output_to_terminal=True)
else:
raise ValueError
scores.extend(new_scores)
hists.extend(new_hists)
save_checkpoint(args['out_path'], args, searcher, b_search, scores, hists)
if args['num_samples'] == len(hists):
print "Experiment completed!"
print
# if os.path.isfile(args['model_path']):
# os.remove(args['model_path'])
# searchers : rand, mcts, mcts_bi, smbo
def run_searcher_comparison_experiment(searcher_type, search_space_type, seed):
args = {'augment_data' : True,
'search_space_type' : search_space_type,
'search_over_hyperparams_type' : 'heavy',
'bisect_search_space' : True if searcher_type == 'mcts_bi' else False,
'random_seed' : seed,
'output_folder' : 'logs/searcher_comparison',
'experiment_name' : "%s_%s_%d" % (search_space_type, searcher_type, seed) ,
'searcher_type' : searcher_type,
'num_samples' : 64, # 64
'max_minutes_per_model' : 30.0, # 60; maybe 30 minutes .more reps, less time.
'max_evals_per_process_run' : 100 } # this field may change. 12
run_searcher_with_checkpointing(args)
if __name__ == '__main__':
experiment_type = sys.argv[1]
# print experiment_type, search_space_type, searcher_type, seed
if experiment_type == 'searcher_comparison':
search_space_type = sys.argv[2]
searcher_type = sys.argv[3]
seed = int(sys.argv[4])
run_searcher_comparison_experiment(searcher_type, search_space_type, seed)
else:
raise ValueError