diff --git a/dev/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip b/dev/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip index 772a296..4100810 100644 Binary files a/dev/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip and b/dev/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip differ diff --git a/dev/_downloads/0d78e075dd52a34e158d7f5f710dfe89/plot_incremental_FNO_darcy.zip b/dev/_downloads/0d78e075dd52a34e158d7f5f710dfe89/plot_incremental_FNO_darcy.zip index c5d6547..4037d96 100644 Binary files a/dev/_downloads/0d78e075dd52a34e158d7f5f710dfe89/plot_incremental_FNO_darcy.zip and b/dev/_downloads/0d78e075dd52a34e158d7f5f710dfe89/plot_incremental_FNO_darcy.zip differ diff --git a/dev/_downloads/20c43dd37baf603889c4dc23e93bdb60/plot_count_flops.zip b/dev/_downloads/20c43dd37baf603889c4dc23e93bdb60/plot_count_flops.zip index 85987fe..e963dee 100644 Binary files a/dev/_downloads/20c43dd37baf603889c4dc23e93bdb60/plot_count_flops.zip and b/dev/_downloads/20c43dd37baf603889c4dc23e93bdb60/plot_count_flops.zip differ diff --git a/dev/_downloads/3864a2d85c7ce11adeac9580559229ab/plot_darcy_flow.zip b/dev/_downloads/3864a2d85c7ce11adeac9580559229ab/plot_darcy_flow.zip index 83a1598..62dc8c1 100644 Binary files a/dev/_downloads/3864a2d85c7ce11adeac9580559229ab/plot_darcy_flow.zip and b/dev/_downloads/3864a2d85c7ce11adeac9580559229ab/plot_darcy_flow.zip differ diff --git a/dev/_downloads/3faf9d2eaee5cc8e9f1c631c002ce544/plot_darcy_flow_spectrum.zip b/dev/_downloads/3faf9d2eaee5cc8e9f1c631c002ce544/plot_darcy_flow_spectrum.zip index 5965bc7..5e32f6e 100644 Binary files a/dev/_downloads/3faf9d2eaee5cc8e9f1c631c002ce544/plot_darcy_flow_spectrum.zip and b/dev/_downloads/3faf9d2eaee5cc8e9f1c631c002ce544/plot_darcy_flow_spectrum.zip differ diff --git a/dev/_downloads/5e60095ce99919773daa83384f767e02/plot_SFNO_swe.zip b/dev/_downloads/5e60095ce99919773daa83384f767e02/plot_SFNO_swe.zip index d2ba122..21578ad 100644 Binary files a/dev/_downloads/5e60095ce99919773daa83384f767e02/plot_SFNO_swe.zip and b/dev/_downloads/5e60095ce99919773daa83384f767e02/plot_SFNO_swe.zip differ diff --git a/dev/_downloads/645da00b8fbbb9bb5cae877fd0f31635/plot_FNO_darcy.zip b/dev/_downloads/645da00b8fbbb9bb5cae877fd0f31635/plot_FNO_darcy.zip index e533dfe..723d2d1 100644 Binary files a/dev/_downloads/645da00b8fbbb9bb5cae877fd0f31635/plot_FNO_darcy.zip and b/dev/_downloads/645da00b8fbbb9bb5cae877fd0f31635/plot_FNO_darcy.zip differ diff --git a/dev/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip b/dev/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip index a4c87dd..ef01b0d 100644 Binary files a/dev/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip and b/dev/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip differ diff --git a/dev/_downloads/7296405f6df7c2cfe184e9b258cee33e/checkpoint_FNO_darcy.zip b/dev/_downloads/7296405f6df7c2cfe184e9b258cee33e/checkpoint_FNO_darcy.zip index c451ee6..30f6fd4 100644 Binary files a/dev/_downloads/7296405f6df7c2cfe184e9b258cee33e/checkpoint_FNO_darcy.zip and b/dev/_downloads/7296405f6df7c2cfe184e9b258cee33e/checkpoint_FNO_darcy.zip differ diff --git a/dev/_downloads/cefc537c5730a6b3e916b83c1fd313d6/plot_UNO_darcy.zip b/dev/_downloads/cefc537c5730a6b3e916b83c1fd313d6/plot_UNO_darcy.zip index fa6a467..3ff042a 100644 Binary files a/dev/_downloads/cefc537c5730a6b3e916b83c1fd313d6/plot_UNO_darcy.zip and b/dev/_downloads/cefc537c5730a6b3e916b83c1fd313d6/plot_UNO_darcy.zip differ diff --git a/dev/_images/sphx_glr_plot_SFNO_swe_001.png b/dev/_images/sphx_glr_plot_SFNO_swe_001.png index 652ea68..ca3ddb9 100644 Binary files a/dev/_images/sphx_glr_plot_SFNO_swe_001.png and b/dev/_images/sphx_glr_plot_SFNO_swe_001.png differ diff --git a/dev/_images/sphx_glr_plot_SFNO_swe_thumb.png b/dev/_images/sphx_glr_plot_SFNO_swe_thumb.png index e4ada44..b7c1311 100644 Binary files a/dev/_images/sphx_glr_plot_SFNO_swe_thumb.png and b/dev/_images/sphx_glr_plot_SFNO_swe_thumb.png differ diff --git a/dev/_images/sphx_glr_plot_UNO_darcy_001.png b/dev/_images/sphx_glr_plot_UNO_darcy_001.png index 6ff5080..fabc843 100644 Binary files a/dev/_images/sphx_glr_plot_UNO_darcy_001.png and b/dev/_images/sphx_glr_plot_UNO_darcy_001.png differ diff --git a/dev/_images/sphx_glr_plot_UNO_darcy_thumb.png b/dev/_images/sphx_glr_plot_UNO_darcy_thumb.png index 4be5cab..5f3c7cb 100644 Binary files a/dev/_images/sphx_glr_plot_UNO_darcy_thumb.png and b/dev/_images/sphx_glr_plot_UNO_darcy_thumb.png differ diff --git a/dev/_modules/index.html b/dev/_modules/index.html index 37a0aed..10d1edf 100644 --- a/dev/_modules/index.html +++ b/dev/_modules/index.html @@ -113,7 +113,9 @@

All modules for which code is available

-

Create the trainer

@@ -328,22 +328,22 @@
Training on 200 samples
 Testing on [50, 50] samples         on resolutions [(32, 64), (64, 128)].
 Raw outputs of shape torch.Size([4, 3, 32, 64])
-[0] time=3.59, avg_loss=2.6227, train_err=10.4908
-Eval: (32, 64)_l2=2.0467, (64, 128)_l2=2.4205
-[3] time=3.57, avg_loss=0.3785, train_err=1.5141
-Eval: (32, 64)_l2=0.6473, (64, 128)_l2=2.3253
-[6] time=3.49, avg_loss=0.2692, train_err=1.0770
-Eval: (32, 64)_l2=0.5009, (64, 128)_l2=2.3432
-[9] time=3.47, avg_loss=0.2131, train_err=0.8524
-Eval: (32, 64)_l2=0.3992, (64, 128)_l2=2.3173
-[12] time=3.50, avg_loss=0.1812, train_err=0.7249
-Eval: (32, 64)_l2=0.3265, (64, 128)_l2=2.3299
-[15] time=3.48, avg_loss=0.1573, train_err=0.6291
-Eval: (32, 64)_l2=0.3441, (64, 128)_l2=2.3306
-[18] time=3.52, avg_loss=0.1410, train_err=0.5639
-Eval: (32, 64)_l2=0.3440, (64, 128)_l2=2.3065
-
-{'train_err': 0.5455278062820434, 'avg_loss': 0.13638195157051086, 'avg_lasso_loss': None, 'epoch_train_time': 3.472705569000027}
+[0] time=3.56, avg_loss=2.6136, train_err=10.4543
+Eval: (32, 64)_l2=1.8840, (64, 128)_l2=2.4460
+[3] time=3.51, avg_loss=0.4108, train_err=1.6431
+Eval: (32, 64)_l2=0.6960, (64, 128)_l2=2.2584
+[6] time=3.49, avg_loss=0.2774, train_err=1.1095
+Eval: (32, 64)_l2=0.6552, (64, 128)_l2=2.2398
+[9] time=3.49, avg_loss=0.2443, train_err=0.9772
+Eval: (32, 64)_l2=0.6225, (64, 128)_l2=2.2648
+[12] time=3.49, avg_loss=0.1959, train_err=0.7834
+Eval: (32, 64)_l2=0.5752, (64, 128)_l2=2.2719
+[15] time=3.53, avg_loss=0.1631, train_err=0.6525
+Eval: (32, 64)_l2=0.5845, (64, 128)_l2=2.2840
+[18] time=3.49, avg_loss=0.1435, train_err=0.5739
+Eval: (32, 64)_l2=0.5651, (64, 128)_l2=2.2851
+
+{'train_err': 0.5775461041927338, 'avg_loss': 0.14438652604818344, 'avg_lasso_loss': None, 'epoch_train_time': 3.4856522659999882}
 

Plot the prediction, and compare with the ground-truth @@ -390,7 +390,7 @@ fig.show() -Inputs, ground-truth output and prediction., Input x (32, 64), Ground-truth y, Model prediction, Input x (64, 128), Ground-truth y, Model prediction

Total running time of the script: (1 minutes 25.850 seconds)

+Inputs, ground-truth output and prediction., Input x (32, 64), Ground-truth y, Model prediction, Input x (64, 128), Ground-truth y, Model prediction

Total running time of the script: (1 minutes 25.808 seconds)

Create the trainer

@@ -453,22 +453,22 @@
Training on 1000 samples
 Testing on [50, 50] samples         on resolutions [16, 32].
 Raw outputs of shape torch.Size([32, 1, 16, 16])
-[0] time=10.29, avg_loss=0.7399, train_err=23.1232
-Eval: 16_h1=0.3704, 16_l2=0.2892, 32_h1=0.7984, 32_l2=0.5579
-[3] time=10.12, avg_loss=0.2458, train_err=7.6809
-Eval: 16_h1=0.2079, 16_l2=0.1581, 32_h1=0.6426, 32_l2=0.4875
-[6] time=10.30, avg_loss=0.2391, train_err=7.4705
-Eval: 16_h1=0.2303, 16_l2=0.1860, 32_h1=0.6388, 32_l2=0.4976
-[9] time=10.24, avg_loss=0.2134, train_err=6.6696
-Eval: 16_h1=0.2252, 16_l2=0.1626, 32_h1=0.6335, 32_l2=0.4734
-[12] time=10.14, avg_loss=0.1867, train_err=5.8336
-Eval: 16_h1=0.2220, 16_l2=0.1662, 32_h1=0.6159, 32_l2=0.4444
-[15] time=10.34, avg_loss=0.1618, train_err=5.0563
-Eval: 16_h1=0.1846, 16_l2=0.1355, 32_h1=0.6092, 32_l2=0.4437
-[18] time=10.16, avg_loss=0.1543, train_err=4.8216
-Eval: 16_h1=0.1876, 16_l2=0.1375, 32_h1=0.6006, 32_l2=0.4470
-
-{'train_err': 3.9057141728699207, 'avg_loss': 0.12498285353183747, 'avg_lasso_loss': None, 'epoch_train_time': 10.18016356399994}
+[0] time=10.09, avg_loss=0.6439, train_err=20.1217
+Eval: 16_h1=0.3112, 16_l2=0.2451, 32_h1=0.7407, 32_l2=0.5562
+[3] time=10.11, avg_loss=0.2395, train_err=7.4830
+Eval: 16_h1=0.2119, 16_l2=0.1621, 32_h1=0.7009, 32_l2=0.5500
+[6] time=10.06, avg_loss=0.2402, train_err=7.5053
+Eval: 16_h1=0.2200, 16_l2=0.1712, 32_h1=0.6949, 32_l2=0.5358
+[9] time=10.05, avg_loss=0.2237, train_err=6.9917
+Eval: 16_h1=0.2063, 16_l2=0.1511, 32_h1=0.6638, 32_l2=0.4938
+[12] time=10.14, avg_loss=0.1872, train_err=5.8492
+Eval: 16_h1=0.2248, 16_l2=0.1629, 32_h1=0.6854, 32_l2=0.4926
+[15] time=10.10, avg_loss=0.1493, train_err=4.6657
+Eval: 16_h1=0.2186, 16_l2=0.1646, 32_h1=0.6619, 32_l2=0.4929
+[18] time=10.09, avg_loss=0.1492, train_err=4.6611
+Eval: 16_h1=0.2014, 16_l2=0.1530, 32_h1=0.6626, 32_l2=0.4440
+
+{'train_err': 4.119179047644138, 'avg_loss': 0.13181372952461243, 'avg_lasso_loss': None, 'epoch_train_time': 10.129040809000003}
 

Plot the prediction, and compare with the ground-truth @@ -518,7 +518,7 @@ fig.show() -Inputs, ground-truth output and prediction., Input x, Ground-truth y, Model prediction

Total running time of the script: (3 minutes 27.939 seconds)

+Inputs, ground-truth output and prediction., Input x, Ground-truth y, Model prediction

Total running time of the script: (3 minutes 25.226 seconds)

-Inputs, ground-truth output and prediction., Input x, Ground-truth y, Model prediction

Total running time of the script: (0 minutes 7.140 seconds)

+Inputs, ground-truth output and prediction., Input x, Ground-truth y, Model prediction

Total running time of the script: (0 minutes 6.999 seconds)