forked from neuraloperator/neuraloperator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
neural_fsdp.py
159 lines (133 loc) · 5.13 KB
/
neural_fsdp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import sys
import time
from neuralop.models import TFNO
from neuralop import Trainer
from neuralop.datasets import load_darcy_flow_small
from neuralop.utils import count_model_params
from neuralop import LpLoss, H1Loss
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel
from torch.distributed.fsdp.wrap import CustomPolicy
from torch.distributed.fsdp.fully_sharded_data_parallel import (
CPUOffload,
BackwardPrefetch,
)
import functools
import torch
import argparse
def benchmark(rank, args, world_size):
print(rank)
device = 'cuda'
RPC_PORT = 29501
init_method_pgroup = "tcp://localhost:{}".format(RPC_PORT)
torch.distributed.init_process_group(
backend="nccl", rank=rank, world_size=world_size, init_method=init_method_pgroup
)
torch.cuda.set_device(rank)
train_loader, test_loaders, data_processor = load_darcy_flow_small(
n_train=10, batch_size=32,
test_resolutions=[16, 32], n_tests=[100, 50],
test_batch_sizes=[32, 32],
positional_encoding=True
)
data_processor = data_processor.to(device)
model = TFNO(n_modes=(64, 64), hidden_channels=256, projection_channels=512, factorization='tucker', rank=0.42)
# model = TFNO(n_modes=(128, 128), hidden_channels=256, projection_channels=512, factorization='tucker', rank=0.42)
model = model.to(device)
config = {}
if args.cpuoffload:
config["cpu_offload"] = CPUOffload(offload_params=True)
model = FullyShardedDataParallel(model, **config)
n_params = count_model_params(model)
print(f'\nOur model has {n_params} parameters.')
sys.stdout.flush()
optimizer = torch.optim.Adam(model.parameters(),
lr=8e-3,
weight_decay=1e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=30)
l2loss = LpLoss(d=2, p=2)
h1loss = H1Loss(d=2)
train_loss = h1loss
eval_losses={'h1': h1loss, 'l2': l2loss}
print('\n### MODEL ###\n', model)
print('\n### OPTIMIZER ###\n', optimizer)
print('\n### SCHEDULER ###\n', scheduler)
print('\n### LOSSES ###')
print(f'\n * Train: {train_loss}')
print(f'\n * Test: {eval_losses}')
sys.stdout.flush()
trainer = Trainer(model=model, n_epochs=100,
device=device,
data_processor=data_processor,
wandb_log=False,
log_test_interval=3,
use_distributed=True,
verbose=True)
epoch_start_time = time.time()
trainer.train(train_loader=train_loader,
test_loaders=test_loaders,
optimizer=optimizer,
scheduler=scheduler,
regularizer=False,
training_loss=train_loss,
eval_losses=eval_losses)
wps = 100 / (time.time() - epoch_start_time)
print("Throughput(wps) is {:.2f}.".format(wps))
test_samples = test_loaders[32].dataset
print("Peak allocated bytes on cuda:{}: {:4f}GB".format(
dist.get_rank(), torch.cuda.memory_stats(dist.get_rank())["allocated_bytes.all.peak"] / 2**30
)
)
test_samples = test_loaders[32].dataset
fig = plt.figure(figsize=(7, 7))
for index in range(3):
data = test_samples[index]
data = data_processor.preprocess(data, batched=False)
# Input x
x = data['x']
# Ground-truth
y = data['y']
# Model prediction
out = model(x.unsqueeze(0))
ax = fig.add_subplot(3, 3, index*3 + 1)
ax.imshow(x[0].cpu(), cmap='gray')
if index == 0:
ax.set_title('Input x')
plt.xticks([], [])
plt.yticks([], [])
ax = fig.add_subplot(3, 3, index*3 + 2)
ax.imshow(y.cpu().squeeze())
if index == 0:
ax.set_title('Ground-truth y')
plt.xticks([], [])
plt.yticks([], [])
ax = fig.add_subplot(3, 3, index*3 + 3)
ax.imshow(out.cpu().squeeze().detach().numpy())
if index == 0:
ax.set_title('Model prediction')
plt.xticks([], [])
plt.yticks([], [])
fig.suptitle('Inputs, ground-truth output and prediction.', y=0.98)
plt.tight_layout()
if rank == 0:
fig.savefig('my_figure.png')
def parse_args():
parser = argparse.ArgumentParser(description="benchmark")
parser.add_argument("--cpuoffload", action="store_true", help="Uses cpuoffload for running benchmarks.")
parser.add_argument("--autowarp", action="store_true", help="Uses autowarp for running benchmarks.")
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
print(f"Running DP benchmark with args: {args}")
num_devices = torch.cuda.device_count() if torch.cuda.is_available() else 1
print(torch.cuda.device_count())
mp.spawn(
benchmark,
args=(args, num_devices),
nprocs=num_devices,
join=True,
)