-
Notifications
You must be signed in to change notification settings - Fork 64
/
spm_P_clusterFDR.m
40 lines (36 loc) · 1.52 KB
/
spm_P_clusterFDR.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
function [Q] = spm_P_clusterFDR(k,df,STAT,R,n,ui,Ps)
% Return the corrected FDR q-value
% FORMAT [Q] = spm_P_clusterFDR(k,df,STAT,R,n,ui,Ps)
%
% k - extent {RESELS}
% df - [df{interest} df{residuals}]
% STAT - Statistical field
% 'Z' - Gaussian field
% 'T' - T - field
% 'X' - Chi squared field
% 'F' - F - field
% R - RESEL Count {defining search volume}
% n - Conjunction number
% ui - feature-inducing threshold
% Ps - Vector of sorted (ascending) p-values
% Q - FDR q-value
%__________________________________________________________________________
%
% References
%
% J.R. Chumbley and K.J. Friston, "False discovery rate revisited: FDR and
% topological inference using Gaussian random fields". NeuroImage,
% 44(1):62-70, 2009.
%
% J.R. Chumbley, K.J. Worsley, G. Flandin and K.J. Friston, "Topological
% FDR for NeuroImaging". Under revision.
%__________________________________________________________________________
% Copyright (C) 2009 Wellcome Trust Centre for Neuroimaging
% Justin Chumbley & Guillaume Flandin
% $Id: spm_P_clusterFDR.m 2764 2009-02-19 15:30:03Z guillaume $
% Compute uncorrected p-values based on k using Random Field Theory
%--------------------------------------------------------------------------
[P, Z] = spm_P_RF(1, k, ui, df, STAT, R, n);
% q value using the Benjamini & Hochberch False Discovery Rate procedure
%--------------------------------------------------------------------------
Q = spm_P_FDR(Z, df, 'P', n, Ps);