-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathnk_ExtractPredictions.m
81 lines (70 loc) · 3.16 KB
/
nk_ExtractPredictions.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
function [OOCVres, cases] = nk_ExtractPredictions(dat, analysis, dim)
flgcv = nk_input('Display the CV data, too?',0,'yes|no',[1,0],1);
labels = dat.label_oocv;
cases = dat.cases_oocv;
if flgcv
if isfield(analysis{dim}.OOCV,'BinResults')
frmwrk = 1;
nclass = length(analysis.params.cv.class{1,1});
R = analysis.OOCV.BinResults;
[ CV2Pred, CV2Ind ] = GetPredictions(analysis, dim, nclass);
elseif isfield(analysis{dim}.OOCV,'MultiResults')
frmwrk = 2;
nclass = length(analysis.params.cv.class{1,1});
R = analysis.OOCV.MultiResults;
[ CV2Pred, CV2Ind, MultiCV2Pred ] = GetPredictions(analysis, dim, nclass);
else
frmwrk = 3;
nclass = 1;
R = analysis.OOCV.RegrResults;
CV2Pred{1} = analysis.GDdims{dim}.Regr.mean_predictions;
end
flgsub = nk_input('Only a specific subgroup in the CV data?',0,'yes|no',[1,0],1);
if flgsub,
switch frmwrk
case {1,2}
ind = CV2Ind{indclass}(subind);
case 3
subind = nk_input('Specifiy index to subgroup observations',0,'e');
ind = analysis.GDdims{dim}.Regr.index_predictions(subind);
end
else
ind = analysis.GDdims{dim}.Regr.index_predictions;
end
fname = 'OOCV & CV prediction results';
cases = [ cases ; dat.cases(ind) ] ;
labels = [ labels ; dat.label(ind) ] ;
R.MeanCV2PredictedValues = [ R.MeanCV2PredictedValues ; analysis.GDdims{dim}.Regr.mean_predictions(ind) ] ;
flgadd = nk_input('Add the CV2 data to some of the OOCV groups',0,'yes|no',[1,0]);
if flgadd
fprintf('\n\nAvailable OOCV groups:')
fprintf('\n======================')
for u = 1 : numel(R.Group)
fprintf('\n%g) %s',u,char(R.Group{u}.GroupName));
end
addind = nk_input('Select group index',0,'e');
R.Group{addind}.ObservedValues = [R.Group{addind}.ObservedValues; dat.label(ind)];
R.Group{addind}.MeanCV2PredictedValues = [R.Group{addind}.MeanCV2PredictedValues; analysis.GDdims{dim}.Regr.mean_predictions(ind)];
R.Group{addind}.CorrPredictObserved = CC(R.Group{addind}.ObservedValues, R.Group{addind}.MeanCV2PredictedValues);
else
R.Group{end+1}.ObservedValues = dat.label(ind);
R.Group{end}.MeanCV2PredictedValues = analysis.GDdims{dim}.Regr.mean_predictions(ind);
R.Group{end}.CorrPredictObserved = CC(R.Group{end}.ObservedValues, R.Group{end}.MeanCV2PredictedValues);
R.Group{end}.GroupName = dat.groupnames;
end
else
fname = 'OOCV prediction results';
end
end
function [ CV2Pred, CV2Ind, MultiCV2Pred ] = GetPredictions(analysis, dim, nclass)
MultiCV2Pred = [];
CV2Pred = cell(nclass,1);
CV2Ind = cell(nclass,1);
for curclass = 1:nclass
CV2Pred{curclass} = analysis.GDdims{dim}.BinClass{curclass}.mean_predictions;
CV2Ind{curclass} = analysis.GDdims{dim}.BinClass{curclass}.index_predictions;
end
if isfield(analysis.GDdims{dim},'MultiClass')
MultiCV2Pred = analysis.GDdims{dim}.MultiClass.multi_probabilitiesCV2;
end
end