The SGP4 algorithm, ported to Rust from the reference Celestrak implementation [1].
The code was entirely refactored to leverage Rust's algebraic data types and highlight the relationship between the implementation and the reference mathematical equations [2].
SGP4 can be called from JavaScript or Python via WebAssembly wrappers. See https://github.com/wasmerio/sgp4 to install and use SGP4 as a WAPM package.
The numerical predictions are almost identical to Celestrak's. The observed differences (less than 2 × 10⁻⁷ km for the position and 10⁻⁹ km.s⁻¹ for the velocity three and a half years after the epoch) are well below the accuracy of the algorithm.
We drew inspiration from the incomplete https://github.com/natronics/rust-sgp4 to write mathematical expressions using UTF-8 characters.
- Documentation
- Environments without std or alloc
- Benchmark
- Variables and mathematical expressions
- Variables
- Mathematical expressions
- UT1 to Julian conversion
- Common initialization
- Near earth initialization
- High altitude near earth initialization
- Elliptic high altitude near earth initialization
- Deep space initialization
- Third body perturbations
- Resonant deep space initialization
- Geosynchronous deep space initialization
- Molniya deep space initialization
- Common propagation
- Near earth propagation
- High altitude near earth propagation
- Deep space propagation
- Third body propagation
- Resonant deep space propagation
- Lyddane deep space propagation
- References
The code documentation is hosted at https://docs.rs/sgp4/latest/sgp4/.
Examples can be found in this repository's examples directory:
- examples/celestrak.rs retrieves the most recent Galileo OMMs from Celestrak and propagates them
- examples/omm.rs parses and propagates a JSON-encoded OMM
- examples/space-track.rs retrieves the 20 most recent launches OMMs from Space-Track and propagates them
- examples/tle.rs parses and propagates a TLE
- examples/tle_afspc.rs parses and propagates a TLE using the AFSPC compatibility mode
- examples/advanced.rs leverages the advanced API to (marginally) accelerate the propagation of deep space resonant satellites
To run an example (here examples/celestrak.rs), use:
cargo run --example celestrak
To run the Space-Track example, you must first assign your Space-Track.org credentials to the fields identity
and password
(see lines 3 and 4 in examples/space-track.rs).
This crate supports no_std
environments. TLE parsing and SGP4 propagation do not require alloc
either. We use num-traits with libm for floating point functions when std
is not available.
See https://github.com/neuromorphicsystems/sgp4-no-std for a minimal no-std example that runs on Docker Linux x86_64.
All serde-related features, such as OMM parsing, require alloc
.
The benchmark code is available at https://github.com/neuromorphicsystems/sgp4-benchmark. It compares two SGP4 implementations in different configurations:
cpp
: the Celestrak implementation [1] in improved modecpp-afspc
: the Celestrak implementation [1] in AFSPC compatibility modecpp-fastmath
: the Celestrak implementation [1] in improved mode with thefast-math
compiler flagcpp-afspc-fastmath
: the Celestrak implementation [1] in AFSPC compatibility mode with thefast-math
compiler flagrust
: our Rust implementation in default moderust-afspc
: our Rust implementation in AFSPC compatibility mode
This benchmark must not be confused with the code in this repository's bench directory. The latter considers only a small subset of the Celestrak catalogue (the tests recommended in [1]) and does not measure the original C++ implementation.
The present results were obtained using a machine with the following configuration:
- CPU - Intel Core i7-8700 @ 3.20GHz
- RAM - Kingston DDR4 @ 2.667 GHz
- OS - Ubuntu 16.04
- Compilers - Rust 1.44.1 and gcc 9.3.0
Accuracy measures the maximum propagation error of each implementation with respect to the reference implementation (cpp-afspc
) over the full Celestrak catalogue (1 minute timestep over 24 hours).
implementation | maximum position error | maximum speed error |
---|---|---|
cpp-afspc |
(reference) | (reference) |
cpp |
1.05 km | 1.30 × 10⁻³ km.s⁻¹ |
cpp-fastmath |
1.05 km | 1.30 × 10⁻³ km.s⁻¹ |
cpp-afspc-fastmath |
4.21 × 10⁻⁸ km | 7.51 × 10⁻¹² km.s⁻¹ |
rust |
1.05 km | 1.30 × 10⁻³ km.s⁻¹ |
rust-afspc |
4.19 × 10⁻⁸ km | 7.46 × 10⁻¹² km.s⁻¹ |
The Rust and C++ fast-math errors have the same order of magnitude. In both cases, they can be attributed to mathematically identical expressions implemented with different floating-point operations.
Speed measures the time it takes to propagate every satellite in the Celestrak catalogue (1 minute timestep over 24 hours) using a single thread. 100 values are sampled per implementation.
implementation | minimum | Q1 | median | Q3 | maximum | relative difference |
---|---|---|---|---|---|---|
cpp-afspc |
8.95 s | 9.02 s | 9.03 s | 9.06 s | 9.18 s | (reference) |
cpp |
8.95 s | 9.01 s | 9.04 s | 9.06 s | 9.25 s | + 0 % |
cpp-fastmath |
7.67 s | 7.74 s | 7.77 s | 7.79 s | 7.90 s | - 14 % |
cpp-afspc-fastmath |
7.70 s | 7.74 s | 7.76 s | 7.79 s | 7.86 s | - 14 % |
rust |
8.36 s | 8.41 s | 8.43 s | 8.45 s | 8.53 s | - 7 % |
rust-afspc |
8.36 s | 8.41 s | 8.43 s | 8.46 s | 8.59 s | - 7 % |
Rust fast-math support is a work in progress (see rust-lang/rust#21690). Similarly to C++, it should have a very small impact on accuracy while providing a substantial speed gain.
Each variable is used to store the result of one and only one expression. Most variables are immutable, with the exception of the variable (E + ω)ᵢ
used to solve Kepler's equation and the state variables tᵢ
, nᵢ
and λᵢ
used to integrate the resonance effects of Earth gravity.
The following tables list the variables used in the code and their associated mathematical symbol. Where possible, we used symbols from [2]. Partial expressions without a name in [2] follow the convention kₙ, n ∈ ℕ
if they are shared between initialization and propagation, and pₙ, n ∈ ℕ
if they are local to initialization or propagation.
- Initialization variables
- Propagation variables
- Third-body initialization variables
- Third-body propagation variables
The following variables depend solely on epoch elements.
variable | symbol | description |
---|---|---|
Elements::datetime.year() |
yᵤ |
Gregorian calendar year |
Elements::datetime.month() |
mᵤ |
Gregorian calendar month in the range [1, 12] |
Elements::datetime.day() |
dᵤ |
Gregorian calendar day in the range [1, 31] |
Elements::datetime.hour() |
hᵤ |
Hours since midnight in the range [0, 23] |
Elements::datetime.minute() |
minᵤ |
Minutes since the hour in the range [0, 59] |
Elements::datetime.second() |
sᵤ |
Seconds since the minute in the range [0, 59] |
Elements::datetime.nanosecond() |
nsᵤ |
Nanoseconds since the second in the range [0, 10⁹[ |
epoch |
y₂₀₀₀ |
Julian years since UTC 1 January 2000 12h00 (J2000) |
d1900 |
d₁₉₀₀ |
Julian days since UTC 1 January 1900 12h00 (J1900) |
d1970 |
d₁₉₇₀ |
Julian days since UTC 1 January 1970 12h00 (J1970) |
c2000 |
c₂₀₀₀ |
Julian centuries since UTC 1 January 2000 12h00 (J2000) |
geopotential.ae |
aₑ |
equatorial radius of the earth in km |
geopotential.ke |
kₑ |
square root of the earth's gravitational parameter in earth radii³ min⁻² |
geopotential.j2 |
J₂ |
un-normalised second zonal harmonic |
geopotential.j3 |
J₃ |
un-normalised third zonal harmonic |
geopotential.j4 |
J₄ |
un-normalised fourth zonal harmonic |
kozai_mean_motion |
n₀ |
mean number of orbits per day (Kozai convention) at epoch in rad.min⁻¹ |
a1 |
a₁ |
semi-major axis at epoch (Kozai convention) |
p0 |
p₀ |
partial expression of 𝛿₀ and 𝛿₁ |
d1 |
𝛿₁ |
used in the Kozai to Brouwer conversion |
d0 |
𝛿₀ |
used in the Kozai to Brouwer conversion |
B* |
B* |
radiation pressure coefficient in earth radii⁻¹ |
orbit_0.inclination |
I₀ |
angle between the equator and the orbit plane at epoch in rad |
orbit_0.right_ascension |
Ω₀ |
angle between vernal equinox and the point where the orbit crosses the equatorial plane at epoch in rad |
orbit_0.eccentricity |
e₀ |
shape of the orbit at epoch |
orbit_0.argument_of_perigee |
ω₀ |
angle between the ascending node and the orbit's point of closest approach to the earth at epoch in rad |
orbit_0.mean_anomaly |
M₀ |
angle of the satellite location measured from perigee at epoch in rad |
orbit_0.mean_motion |
n₀" |
mean number of orbits per day (Brouwer convention) at epoch in rad.min⁻¹ |
p1 |
p₁ |
cosine of the inclination at epoch used in multiple expressions during initialization (θ in [2], renamed to avoid confusion with the sidereal time) |
p2 |
p₂ |
partial expression of multiple initialization expressions |
a0 |
a₀" |
semi-major axis at epoch (Brouwer convention) |
p3 |
p₃ |
perigee in earth radii |
p4 |
p₄ |
height of perigee in km |
p5 |
p₅ |
partial expression of s |
s |
s |
altitude parameter of the atmospheric drag expression |
p6 |
p₆ |
partial expression of the atmospheric drag |
xi |
ξ |
partial expression of multiple initialization expressions |
p7 |
p₇ |
partial expression of multiple initialization expressions |
eta |
η |
partial expression of multiple initialization expressions and of the argument of perigee and mean anomaly in eccentric high altitude near earth propagation |
p8 |
p₈ |
partial expression of multiple initialization expressions |
p9 |
p₉ |
partial expression of multiple initialization expressions |
c1 |
C₁ |
partial expression of multiple initialization and propagation expressions |
p10 |
p₁₀ |
partial expression of multiple initialization expressions |
b0 |
β₀ |
partial expression of multiple initialization expressions |
p11 |
p₁₁ |
partial expression of multiple initialization expressions |
p12 |
p₁₂ |
partial expression of multiple initialization expressions |
p13 |
p₁₃ |
partial expression of multiple initialization expressions |
p14 |
p₁₄ |
partial expression of multiple initialization expressions |
p15 |
p₁₅ |
partial expression of multiple initialization expressions |
k14 |
k₁₄ |
first order coefficient of the argument of perigee before adding solar and lunar perturbations |
c4 |
C₄ |
partial expression of multiple initialization and propagation expressions (differs from the C₄ expression in [2] by a factor B*) |
right_ascension_dot |
Ω̇ |
first order coefficient of the right ascension |
argument_of_perigee_dot |
ω̇ |
first order coefficient of the argument of perigee |
mean_anomaly_dot |
Ṁ |
first order coefficient of the mean anomaly |
k0 |
k₀ |
second order coefficient of the right ascension before adding perturbations |
k1 |
k₁ |
partial expression of the second order coefficient of the mean anomaly |
k2 |
k₂ |
partial expression of aᵧₙ in near earth propagation |
k3 |
k₃ |
partial expression of rₖ , ṙₖ and rḟₖ in near earth propagation |
k4 |
k₄ |
partial expression of uₖ in near earth propagation |
k5 |
k₅ |
partial expression of the initial Kepler variable p₃₈ in near earth propagation |
k6 |
k₆ |
partial expression of multiple initialization expressions and of rₖ and rḟₖ in near earth propagation |
d2 |
D₂ |
partial expression of multiple near earth initialization expressions and of the semi-major axis in near earth propagation |
p16 |
p₁₆ |
partial expression of multiple near earth initialization expressions |
d3 |
D₃ |
partial expression of multiple near earth initialization expressions and of the semi-major axis in near earth propagation |
d4 |
D₄ |
partial expression of multiple near earth initialization expressions and of the semi-major axis in near earth propagation |
c5 |
C₅ |
partial expression of multiple initialization and propagation expressions (differs from the C₅ expression in [2] by a factor B*) |
k7 |
k₇ |
sine of the mean anomaly at epoch |
k8 |
k₈ |
partial expression of the mean anomaly third order coefficient in high altitude near earth propagation |
k9 |
k₉ |
partial expression of the mean anomaly fourth order coefficient in high altitude near earth propagation |
k10 |
k₁₀ |
partial expression of the mean anomaly fifth order coefficient in high altitude near earth propagation |
k11 |
k₁₁ |
partial expression of the argument of perigee and mean anomaly in eccentric high altitude near earth propagation |
k12 |
k₁₂ |
partial expression of the argument of perigee and mean anomaly in eccentric high altitude near earth propagation |
k13 |
k₁₃ |
partial expression of the argument of perigee and mean anomaly in eccentric high altitude near earth propagation |
lunar_right_ascension_epsilon |
Ωₗₑ |
lunar right ascension of the ascending node |
lunar_right_ascension_sine |
sin Ωₗ |
sine of the lunar right ascension of the ascending node referred to the equator |
lunar_right_ascension_cosine |
cos Ωₗ |
cosine of the lunar right ascension of the ascending node referred to the equator |
lunar_argument_of_perigee |
ωₗ |
lunar argument of perigee |
sidereal_time_0 |
θ₀ |
Greenwich sidereal time at epoch |
lambda_0 |
λ₀ |
Earth gravity resonance variable at epoch |
lambda_dot_0 |
λ̇₀ |
time derivative of the Earth gravity resonance variable at epoch |
p17 |
p₁₇ |
partial expression of 𝛿ᵣ₁ , 𝛿ᵣ₂ and 𝛿ᵣ₃ |
dr1 |
𝛿ᵣ₁ |
first Earth gravity resonance coefficient for geosynchronous orbits (𝛿₁ in [2], renamed to avoid confusion with 𝛿₁ used in the Kozai to Brouwer conversion) |
dr2 |
𝛿ᵣ₂ |
second Earth gravity resonance coefficient for geosynchronous orbits (𝛿₂ in [2], renamed to match 𝛿ᵣ₁ ) |
dr3 |
𝛿ᵣ₃ |
third Earth gravity resonance coefficient for geosynchronous orbits (𝛿₃ in [2], renamed to match 𝛿ᵣ₁ ) |
p18 |
p₁₈ |
partial expression of D₂₂₀₋₁ and D₂₂₁₁ |
p19 |
p₁₉ |
partial expression of D₃₂₁₀ and D₃₂₂₂ |
p20 |
p₂₀ |
partial expression of D₄₄₁₀ and D₄₄₂₂ |
p21 |
p₂₁ |
partial expression of D₅₂₂₀ , D₅₂₃₂ , D₅₄₂₁ and D₅₄₃₃ |
f220 |
F₂₂₀ |
partial expression of D₂₂₀₋₁ and D₄₄₁₀ |
g211 |
G₂₁₁ |
partial expression of D₂₂₁₁ |
g310 |
G₃₁₀ |
partial expression of D₃₂₁₀ |
g322 |
G₃₂₂ |
partial expression of D₃₂₂₂ |
g410 |
G₄₁₀ |
partial expession of D₄₄₁₀ |
g422 |
G₄₂₂ |
partial expession of D₄₄₂₂ |
g520 |
G₅₂₀ |
partial expression of D₅₂₂₀ |
g532 |
G₅₃₂ |
partial expression of D₅₂₃₂ |
g521 |
G₅₂₁ |
partial expression of D₅₄₂₁ |
g533 |
G₅₃₃ |
partial expression of D₅₄₃₃ |
d220₋1 |
D₂₂₀₋₁ |
gravity resonance coefficient for Molniya orbits (the Dₗₘₚₖ expression in [2] is missing a factor l - 2p + k from the original equation in [4] with k = -1 instead of 1 ) |
d2211 |
D₂₂₁₁ |
gravity resonance coefficient for Molniya orbits (the Dₗₘₚₖ expression in [2] is missing a factor l - 2p + k from the original equation in [4]) |
d3210 |
D₃₂₁₀ |
see D₂₂₁₁ |
d3222 |
D₃₂₂₂ |
see D₂₂₁₁ |
d4410 |
D₄₄₁₀ |
see D₂₂₁₁ |
d4422 |
D₄₄₂₂ |
see D₂₂₁₁ |
d5220 |
D₅₂₂₀ |
see D₂₂₁₁ |
d5232 |
D₅₂₃₂ |
see D₂₂₁₁ |
d5421 |
D₅₄₂₁ |
see D₂₂₁₁ |
d5433 |
D₅₄₃₃ |
see D₂₂₁₁ |
The following expressions depend on the propagation time t
.
variable | symbol | description |
---|---|---|
t |
t |
minutes elapsed since epoch (can be negative) |
p22 |
p₂₂ |
right ascension of the ascending node with neither Earth gravity resonance nor Sun and Moon contributions |
p23 |
p₂₃ |
argument of perigee with neither high altitude drag effects, Earth gravity resonance nor Sun and Moon contributions |
orbit.inclination |
I |
inclination at epoch plus t without the short-period effects of Earth gravity |
orbit.right_ascension |
Ω |
right ascension of the ascending node at epoch plus t without the short-period effects of Earth gravity |
orbit.eccentricity |
e |
eccentricity at epoch plus t without the short-period effects of Earth gravity |
orbit.argument_of_perigee |
ω |
argument of perigee at epoch plus t without the short-period effects of Earth gravity |
orbit.mean_anomaly |
M |
mean anomaly at epoch plus t without the short-period effects of Earth gravity |
orbit.mean_motion |
n |
mean motion at epoch plus t without the short-period effects of Earth gravity |
a |
a |
semi-major axis |
p32 |
p₃₂ |
partial expression of aᵧₙ |
p33 |
p₃₃ |
partial expression of rₖ , ṙₖ and rḟₖ |
p34 |
p₃₄ |
partial expression of uₖ |
p35 |
p₃₅ |
partial expression of the initial Kepler variable p₃₈ |
p36 |
p₃₆ |
partial expression of rₖ and rḟₖ |
p37 |
p₃₇ |
partial expression of aᵧₙ and the initial Kepler variable p₃₈ |
axn |
aₓₙ |
normalized linear eccentricity projected on the line of nodes |
ayn |
aᵧₙ |
normalized linear eccentricity projected on the normal to the line of nodes |
p38 |
p₃₈ |
initial Kepler variable (U in [2], renamed to avoid confusion with the true anomaly plus argument of perigee u ) |
ew |
(E + ω)ᵢ |
Kepler variable used in an iterative process to estimate the eccentric anomaly E |
delta |
Δ(E + ω)ᵢ |
correction to the Kepler variable at iteration i |
p39 |
p₃₉ |
eccentricity at epoch plus t |
pl |
pₗ |
semi-latus rectum |
p40 |
p₄₀ |
normalized linear eccentricity projected on the semi-minor axis |
r |
r |
radius (distance to the focus) without the short-period effects of Earth gravity |
r_dot |
ṙ |
radius time derivative without the short-period effects of Earth gravity |
b |
β |
semi-minor axis over semi-major axis |
p41 |
p₄₁ |
partial expression of p₄₂ and p₄₃ |
p42 |
p₄₂ |
sine of u |
p43 |
p₄₃ |
cosine of u |
u |
u |
true anomaly plus argument of perigee without the short-period effects of Earth gravity |
p44 |
p₄₄ |
sin(2 u) , partial expression of uₖ , Ωₖ and ṙₖ |
p45 |
p₄₅ |
cos(2 u) , partial expression of rₖ , Iₖ and rḟₖ |
p46 |
p₄₆ |
partial expression of rₖ , uₖ , Iₖ and Ωₖ |
rk |
rₖ |
radius (distance to the focus) |
uk |
uₖ |
true anomaly plus argument of perigee |
inclination_k |
Iₖ |
inclination at epoch plus t |
right_ascension_k |
Ωₖ |
right ascension at epoch plus t |
rk_dot |
ṙₖ |
radius time derivative |
rfk_dot |
rḟₖ |
radius times the true anomaly derivative |
u0 |
u₀ |
x component of the position unit vector |
u1 |
u₁ |
y component of the position unit vector |
u2 |
u₂ |
z component of the position unit vector |
prediction.position[0] |
r₀ |
x component of the position vector in km (True Equator, Mean Equinox (TEME) of epoch reference frame) |
prediction.position[1] |
r₁ |
y component of the position vector in km (True Equator, Mean Equinox (TEME) of epoch reference frame) |
prediction.position[2] |
r₂ |
z component of the position vector in km (True Equator, Mean Equinox (TEME) of epoch reference frame) |
prediction.velocity[0] |
ṙ₀ |
x component of the velocity vector in km.s⁻¹ (True Equator, Mean Equinox (TEME) of epoch reference frame) |
prediction.velocity[1] |
ṙ₁ |
y component of the velocity vector in km.s⁻¹ (True Equator, Mean Equinox (TEME) of epoch reference frame) |
prediction.velocity[2] |
ṙ₂ |
z component of the velocity vector in km.s⁻¹ (True Equator, Mean Equinox (TEME) of epoch reference frame) |
p24 |
p₂₄ |
mean anomaly without drag contributions in near earth propagation |
p25 |
p₂₅ |
partial expression of ω and M in near earth propagation |
p26 |
p₂₆ |
mean anomaly with elliptic correction and without drag contributions in near earth propagation |
p27 |
p₂₇ |
non-clamped eccentricity in near earth propagation |
p28 |
p₂₈ |
semi-major axis with resonance correction in deep space propagation |
p29 |
p₂₉ |
mean anomaly with resonance correction in deep space propagation |
p31 |
p₃₁ |
non-clamped eccentricity in deep space propagation |
sidereal_time |
θ |
sidereal time at epoch plus t |
delta_t |
Δt |
time step used in the integration of resonance effects of Earth gravity in min (either 720 or -720 ) |
lambda_dot |
λ̇ᵢ |
resonance effects of Earth gravity variable's time derivative at epoch plus i Δt |
ni_dot |
ṅᵢ |
mean motion time derivative at epoch plus i Δt |
ni_ddot |
n̈ᵢ |
mean motion second time derivative at epoch plus i Δt |
ResonanceState::t |
tᵢ |
resonance effects of Earth gravity integrator time (i Δt ) |
ResonanceState::mean_motion |
nᵢ |
mean motion time derivative at epoch plus Δt i |
ResonanceState::lambda |
λᵢ |
resonance effects of Earth gravity variable at epoch plus i Δt |
p30 |
p₃₀ |
non-normalised Ω in Lyddane deep space propagation |
The contribution of the Sun and the Moon to the orbital elements are calculated with a unique set of expressions. src/third_body.rs provides a generic implementation of these expressions. Variables specific to the third body (either the Sun or the Moon) are annotated with x
. In every other file, these variables are annotated with s
if they correspond to solar perturbations, and l
if they correspond to lunar perturbations.
The aₓₙ
, Xₓₙ
, Zₓₙ
(n ∈ ℕ
), Fₓ₂
and Fₓ₃
variables correspond to the aₙ
, Xₙ
, Zₙ
, F₂
and F₃
variables in [2]. The added x
highlights the dependence on the perturbing third body.
The following variables depend solely on epoch elements.
variable | symbol | description |
---|---|---|
third_body_inclination_sine |
sin Iₓ |
sine of the inclination of the Sun (sin Iₛ ) or the Moon (sin Iₗ ) |
third_body_inclination_cosine |
cos Iₓ |
cosine of the inclination of the Sun (cos Iₛ ) or the Moon (cos Iₗ ) |
delta_right_ascension_sine |
sin(Ω₀ - Ωₓ) |
sine of the difference between the right ascension of the ascending node of the satellite at epoch and the Sun's (sin(Ω₀ - Ωₛ) ) or the Moon's (sin(Ω₀ - Ωₗ) ) |
delta_right_ascension_cosine |
cos(Ω₀ - Ωₓ) |
cosine of the difference between the right ascension of the ascending node of the satellite at epoch and the Sun's (cos(Ω₀ - Ωₛ) ) or the Moon's (cos(Ω₀ - Ωₗ) ) |
third_body_argument_of_perigee_sine |
sin ωₓ |
sine of the argument of perigee of the Sun (sin ωₛ ) or the Moon (sin ωₗ ) |
third_body_argument_of_perigee_cosine |
cos ωₓ |
cosine of the argument of perigee of the Sun (sin ωₛ ) or the Moon (cos ωₗ ) |
third_body_mean_anomaly_0 |
Mₓ₀ |
mean anomaly at epoch of the Sun (Mₛ₀ ) or the Moon (Mₗ₀ ) |
ax1 |
aₓ₁ |
partial expression of multiple Xₓₙ and Zₓₙ expressions |
ax3 |
aₓ₃ |
partial expression of multiple Xₓₙ and Zₓₙ expressions |
ax7 |
aₓ₇ |
partial expression of multiple aₓ₂ and aₓ₅ |
ax8 |
aₓ₈ |
partial expression of multiple aₓ₂ and aₓ₅ |
ax9 |
aₓ₉ |
partial expression of multiple aₓ₄ and aₓ₆ |
ax10 |
aₓ₁₀ |
partial expression of multiple aₓ₄ and aₓ₆ |
ax2 |
aₓ₂ |
partial expression of multiple Xₓₙ and Zₓₙ expressions |
ax4 |
aₓ₄ |
partial expression of multiple Xₓₙ and Zₓₙ expressions |
ax5 |
aₓ₅ |
partial expression of multiple Xₓₙ and Zₓₙ expressions |
ax6 |
aₓ₆ |
partial expression of multiple Xₓₙ and Zₓₙ expressions |
xx1 |
Xₓ₁ |
partial expression of multiple Zₓₙ expressions, kₓ₀ , kₓ₁ and ėₓ |
xx2 |
Xₓ₂ |
partial expression of multiple Zₓₙ expressions, kₓ₀ , kₓ₁ and ėₓ |
xx3 |
Xₓ₃ |
partial expression of multiple Zₓₙ expressions, kₓ₀ , kₓ₁ and ėₓ |
xx4 |
Xₓ₄ |
partial expression of multiple Zₓₙ expressions, kₓ₀ , kₓ₁ and ėₓ |
xx5 |
Xₓ₅ |
partial expression of multiple Zₓₙ expressions |
xx6 |
Xₓ₆ |
partial expression of multiple Zₓₙ expressions |
xx7 |
Xₓ₇ |
partial expression of multiple Zₓₙ expressions |
xx8 |
Xₓ₈ |
partial expression of multiple Zₓₙ expressions |
zx31 |
Zₓ₃₁ |
partial expression of Zₓ₃ , kₓ₈ and ω̇ₓ |
zx32 |
Zₓ₃₂ |
partial expression of Zₓ₂ , kₓ₇ and ω̇ₓ |
zx33 |
Zₓ₃₃ |
partial expression of Zₓ₃ , kₓ₈ and ω̇ₓ |
zx11 |
Zₓ₁₁ |
partial expression of kₓ₃ and İₓ |
zx13 |
Zₓ₁₃ |
partial expression of kₓ₃ and İₓ |
zx21 |
Zₓ₂₁ |
partial expression of kₓ₁₁ and Ω̇ₓ |
zx23 |
Zₓ₂₃ |
partial expression of kₓ₁₁ and Ω̇ₓ |
zx1 |
Zₓ₁ |
partial expression of kₓ₅ and Ṁₓ |
zx3 |
Zₓ₃ |
partial expression of kₓ₅ and Ṁₓ |
px0 |
pₓ₀ |
partial expression of multiple kₓₙ expressions and Ṁₓ |
px1 |
pₓ₁ |
partial expression of multiple kₓₙ expressions and İₓ |
px2 |
pₓ₂ |
partial expression of multiple kₓₙ expressions and ω̇ₓ |
px3 |
pₓ₃ |
partial expression of multiple kₓₙ expressions and ėₓ |
kx0 |
kₓ₀ |
Fₓ₂ coefficient of δeₓ |
kx1 |
kₓ₁ |
Fₓ₃ coefficient of δeₓ |
kx2 |
kₓ₂ |
Fₓ₂ coefficient of δIₓ |
kx3 |
kₓ₃ |
Fₓ₃ coefficient of δIₓ |
kx4 |
kₓ₄ |
Fₓ₂ coefficient of δMₓ |
kx5 |
kₓ₅ |
Fₓ₃ coefficient of δMₓ |
kx6 |
kₓ₆ |
sin fₓ coefficient of δMₓ |
kx7 |
kₓ₇ |
Fₓ₂ coefficient of pₓ₄ |
kx8 |
kₓ₈ |
Fₓ₃ coefficient of pₓ₄ |
kx9 |
kₓ₉ |
sin fₓ coefficient of pₓ₄ |
kx10 |
kₓ₁₀ |
Fₓ₂ coefficient of pₓ₅ |
kx11 |
kₓ₁₁ |
Fₓ₃ coefficient of pₓ₅ |
third_body_dots.inclination |
İₓ |
secular contribution of the Sun (İₛ ) or the Moon (İₗ ) to the inclination |
third_body_right_ascension_dot |
Ω̇ₓ |
secular contribution of the Sun (Ω̇ₛ ) or the Moon (Ω̇ₗ ) to the right ascension of the ascending node |
third_body_dots.eccentricity |
ėₓ |
secular contribution of the Sun (ėₛ ) or the Moon (ėₗ ) to the eccentricity |
third_body_dots.agument_of_perigee |
ω̇ₓ |
secular contribution of the Sun (ω̇ₛ ) or the Moon (ω̇ₗ ) to the argument of perigee |
third_body_dots.mean_anomaly |
Ṁₓ |
secular contribution of the Sun (Ṁₛ ) or the Moon (Ṁₗ ) to the mean anomaly |
The following variables depend on the propagation time t
.
variable | symbol | description |
---|---|---|
third_body_mean_anomaly |
Mₓ |
mean anomaly of the Sun (Mₛ ) or the Moon (Mₗ ) |
fx |
fₓ |
third body true anomaly |
fx2 |
Fₓ₂ |
partial expression of the third body long-period periodic contribution |
fx3 |
Fₓ₃ |
partial expression of the third body long-period periodic contribution |
third_body_delta_eccentricity |
δeₓ |
long-period periodic contribution of the Sun (δeₛ ) or the Moon (δeₗ ) to the eccentricity |
third_body_delta_inclination |
δIₓ |
long-period periodic contribution of the Sun (δIₛ ) or the Moon (δIₗ ) to the inclination |
third_body_delta_mean_mootion |
δMₓ |
long-period periodic contribution of the Sun (δMₛ ) or the Moon (δMₗ ) to the mean motion |
px4 |
pₓ₄ |
partial expression of the long-period periodic contribution of the Sun (pₛ₄ ) or the Moon (pₗ₄ ) to the right ascension of the ascending node and the argument of perigee |
px5 |
pₓ₅ |
partial expression of the long-period periodic contribution of the Sun (pₛ₅ ) or the Moon (pₗ₅ ) to the right ascension of the ascending node |
The epoch (Julian years since UTC 1 January 2000 12h00) can be calculated with either the AFSPC formula:
y₂₀₀₀ = (367 yᵤ - ⌊7 (yᵤ + ⌊(mᵤ + 9) / 12⌋) / 4⌋ + 275 ⌊mᵤ / 9⌋ + dᵤ
+ 1721013.5
+ (((nsᵤ / 10⁹ + sᵤ) / 60 + minᵤ) / 60 + hᵤ) / 24
- 2451545)
/ 365.25
or the more accurate version of the same formula:
y₂₀₀₀ = (367 yᵤₜ₁ - ⌊7 (yᵤₜ₁ + ⌊(mᵤₜ₁ + 9) / 12⌋) / 4⌋ + 275 ⌊mᵤₜ₁ / 9⌋ + dᵤₜ₁ - 730531) / 365.25
+ (3600 hᵤₜ₁ + 60 minᵤₜ₁ + sᵤₜ₁ - 43200) / (24 × 60 × 60 × 365.25)
+ nsᵤₜ₁ / (24 × 60 × 60 × 365.25 × 10⁹)
a₁ = (kₑ / n₀)²ᐟ³
3 3 cos²I₀ - 1
p₀ = - J₂ ---------------
4 (1 − e₀²)³ᐟ²
𝛿₁ = p₀ / a₁²
𝛿₀ = p₀ / (a₁ (1 - ¹/₃ 𝛿₁ - 𝛿₁² - ¹³⁴/₈₁ 𝛿₁³))²
n₀" = n₀ / (1 + 𝛿₀)
p₁ = cos I₀
p₂ = 1 − e₀²
k₆ = 3 p₁² - 1
a₀" = (kₑ / n₀")²ᐟ³
p₃ = a₀" (1 - e₀)
p₄ = aₑ (p₃ - 1)
p₅ = │ 20 if p₄ < 98
│ p₄ - 78 if 98 ≤ p₄ < 156
│ 78 otherwise
s = p₅ / aₑ + 1
p₆ = ((120 - p₅) / aₑ)⁴
ξ = 1 / (a₀" - s)
p₇ = p₆ ξ⁴
η = a₀" e₀ ξ
p₈ = |1 - η²|
p₉ = p₇ / p₈⁷ᐟ²
C₁ = B* p₉ n₀" (a₀" (1 + ³/₂ η² + e₀ η (4 + η²))
+ ³/₈ J₂ ξ k₆ (8 + 3 η² (8 + η²)) / p₈)
p₁₀ = (a₀" p₂)⁻²
β₀ = p₂¹ᐟ²
p₁₁ = ³/₂ J₂ p₁₀ n₀"
p₁₂ = ¹/₂ p₁₁ J₂ p₁₀
p₁₃ = - ¹⁵/₃₂ J₄ p₁₀² n₀"
p₁₄ = - p₁₁ p₁ + (¹/₂ p₁₂ (4 - 19 p₁²) + 2 p₁₃ (3 - 7 p₁²)) p₁
k₁₄ = - ¹/₂ p₁₁ (1 - 5 p₁²) + ¹/₁₆ p₁₂ (7 - 114 p₁² + 395 p₁⁴)
p₁₅ = n₀" + ¹/₂ p₁₁ β₀ k₆ + ¹/₁₆ p₁₂ β₀ (13 - 78 p₁² + 137 p₁⁴)
C₄ = 2 B* n₀" p₉ a₀" p₂ (
η (2 + ¹/₂ η²)
+ e₀ (¹/₂ + 2 η²)
- J₂ ξ / (a p₈) (-3 k₆ (1 - 2 e₀ η + η² (³/₂ - ¹/₂ e₀ η))
+ ³/₄ (1 - p₁²) (2 η² - e₀ η (1 + η²)) cos 2 ω₀)
k₀ = ⁷/₂ p₂ p₁₁ p₁ C₁
k₁ = ³/₂ C₁
Ω̇ = │ p₁₄ if n₀" > 2π / 225
│ p₁₄ + (Ω̇ₛ + Ω̇ₗ) otherwise
ω̇ = │ k₁₄ if n₀" > 2π / 225
│ k₁₄ + (ω̇ₛ + ω̇ₗ) otherwise
Ṁ = │ p₁₅ if n₀" > 2π / 225
│ p₁₅ + (Ṁₛ + Ṁₗ) otherwise
Defined only if n₀" > 2π / 225
(near earth).
1 J₃
k₂ = - - -- sin I₀
2 J₂
k₃ = 1 - p₁²
k₄ = 7 p₁² - 1
│ 1 J₃ 3 + 5 p₁
k₅ = │ - - -- sin I₀ -------- if |1 + p₁| > 1.5 × 10⁻¹²
│ 4 J₂ 1 + p₁
│ 1 J₃ 3 + 5 p₁
│ - - -- sin I₀ ----------- otherwise
│ 4 J₂ 1.5 × 10⁻¹²
Defined only if n₀" > 2π / 225
(near earth) and p₃ ≥ 220 / (aₑ + 1)
(high altitude).
D₂ = 4 a₀" ξ C₁²
p₁₆ = D₂ ξ C₁ / 3
D₃ = (17 a + s) p₁₆
D₄ = ¹/₂ p₁₆ a₀" ξ (221 a₀" + 31 s) C₁
C₅ = 2 B* p₉ a₀" p₂ (1 + 2.75 (η² + η e₀) + e₀ η³)
k₁₁ = (1 + η cos M₀)³
k₇ = sin M₀
k₈ = D₂ + 2 C₁²
k₉ = ¹/₄ (3 D₃ + C₁ (12 D₂ + 10 C₁²))
k₁₀ = ¹/₅ (3 D₄ + 12 C₁ D₃ + 6 D₂² + 15 C₁² (2 D₂ + C₁²))
Defined only if n₀" > 2π / 225
(near earth), p₃ ≥ 220 / (aₑ + 1)
(high altitude) and e₀ > 10⁻⁴
(elliptic).
J₃ p₇ ξ n₀" sin I₀
k₁₂ = - 2 B* cos ω₀ -- ----------------
J₂ e₀
2 p₇ B*
k₁₃ = - - -----
3 e₀ η
Defined only if n₀" ≤ 2π / 225
(deep space).
e₁₉₀₀ = 365.25 (t₀ + 100)
sin Iₛ = 0.39785416
cos Iₛ = 0.91744867
sin(Ω₀ - Ωₛ) = sin Ω₀
cos(Ω₀ - Ωₛ) = cos Ω₀
sin ωₛ = -0.98088458
cos ωₛ = 0.1945905
Mₛ₀ = (6.2565837 + 0.017201977 e₁₉₀₀) rem 2π
Ωₗₑ = 4.523602 - 9.2422029 × 10⁻⁴ e₁₉₀₀ rem 2π
cos Iₗ = 0.91375164 - 0.03568096 Ωₗₑ
sin Iₗ = (1 - cos²Iₗ)¹ᐟ²
sin Ωₗ = 0.089683511 sin Ωₗₑ / sin Iₗ
cos Ωₗ = (1 - sin²Ωₗ)¹ᐟ²
ωₗ = 5.8351514 + 0.001944368 e₁₉₀₀
0.39785416 sin Ωₗₑ / sin Iₗ
+ tan⁻¹ ------------------------------------------ - Ωₗₑ
cos Ωₗ cos Ωₗₑ + 0.91744867 sin Ωₗ sin Ωₗₑ
sin(Ω₀ - Ωₗ) = sin Ω₀ cos Ωₗ - cos Ω₀ sin Ωₗ
cos(Ω₀ - Ωₗ) = cos Ωₗ cos Ω₀ + sin Ωₗ sin Ω₀
Mₗ₀ = (-1.1151842 + 0.228027132 e₁₉₀₀) rem 2π
Defined only if n₀" ≤ 2π / 225
(deep space).
The following variables are evaluated for two third bodies, the Sun (solar perturbations s
) and the Moon (lunar perturbations l
). Variables specific to the third body are annotated with x
. In other sections, x
is either s
or l
.
aₓ₁ = cos ωₓ cos(Ω₀ - Ωₓ) + sin ωₓ cos Iₓ sin(Ω₀ - Ωₓ)
aₓ₃ = - sin ωₓ cos(Ω₀ - Ωₓ) + cos ωₓ cos Iₓ sin(Ω₀ - Ωₓ)
aₓ₇ = - cos ωₓ sin(Ω₀ - Ωₓ) + sin ωₓ cos Iₓ cos(Ω₀ - Ωₓ)
aₓ₈ = sin ωₓ sin Iₓ
aₓ₉ = sin ωₓ sin(Ω₀ - Ωₓ) + cos ωₓ cos Iₓ cos(Ω₀ - Ωₓ)
aₓ₁₀ = cos ωₓ sin Iₓ
aₓ₂ = aₓ₇ cos i₀ + aₓ₈ sin I₀
aₓ₄ = aₓ₉ cos i₀ + aₓ₁₀ sin I₀
aₓ₅ = - aₓ₇ sin I₀ + aₓ₈ cos I₀
aₓ₆ = - aₓ₉ sin I₀ + aₓ₁₀ cos I₀
Xₓ₁ = aₓ₁ cos ω₀ + aₓ₂ sin ω₀
Xₓ₂ = aₓ₃ cos ω₀ + aₓ₄ sin ω₀
Xₓ₃ = - aₓ₁ sin ω₀ + aₓ₂ cos ω₀
Xₓ₄ = - aₓ₃ sin ω₀ + aₓ₄ cos ω₀
Xₓ₅ = aₓ₅ sin ω₀
Xₓ₆ = aₓ₆ sin ω₀
Xₓ₇ = aₓ₅ cos ω₀
Xₓ₈ = aₓ₆ cos ω₀
Zₓ₃₁ = 12 Xₓ₁² - 3 Xₓ₃²
Zₓ₃₂ = 24 Xₓ₁ Xₓ₂ - 6 Xₓ₃ Xₓ₄
Zₓ₃₃ = 12 Xₓ₂² - 3 Xₓ₄²
Zₓ₁₁ = - 6 aₓ₁ aₓ₅ + e₀² (- 24 Xₓ₁ Xₓ₇ - 6 Xₓ₃ Xₓ₅)
Zₓ₁₃ = - 6 aₓ₃ aₓ₆ + e₀² (-24 Xₓ₂ Xₓ₈ - 6 Xₓ₄ Xₓ₆)
Zₓ₂₁ = 6 aₓ₂ aₓ₅ + e₀² (24.0 Xₓ₁ Xₓ₅ - 6 Xₓ₃ Xₓ₇)
Zₓ₂₃ = 6 aₓ₄ aₓ₆ + e₀² (24 Xₓ₂ Xₓ₆ - 6 Xₓ₄ Xₓ₈)
Zₓ₁ = 2 (3 (aₓ₁² + aₓ₂²) + Zₓ₃₁ e₀²) + p₁ Zₓ₃₁
Zₓ₃ = 2 (3 (aₓ₃² + aₓ₄²) + Zₓ₃₃ e₀²) + p₁ Zₓ₃₃
pₓ₀ = Cₓ / n₀"
1 pₓ₀
pₓ₁ = - - ---
2 β₀
pₓ₂ = pₓ₀ β₀
pₓ₃ = - 15 e₀ pₓ₂
Ω̇ₓ = │ 0 if I₀ < 5.2359877 × 10⁻²
│ or I₀ > π - 5.2359877 × 10⁻²
│ - nₓ pₓ₁ (Zₓ₂₁ + Zₓ₂₃) / sin I₀ otherwise
kₓ₀ = 2 pₓ₃ (Xₓ₂ Xₓ₃ + Xₓ₁ Xₓ₄)
kₓ₁ = 2 pₓ₃ (Xₓ₂ Xₓ₄ - Xₓ₁ Xₓ₃)
kₓ₂ = 2 pₓ₁ (- 6 (aₓ₁ aₓ₆ + aₓ₃ aₓ₅) + e₀² (- 24 (Xₓ₂ Xₓ₇ + Xₓ₁ Xₓ₈) - 6 (Xₓ₃ Xₓ₆ + Xₓ₄ Xₓ₅)))
kₓ₃ = 2 pₓ₁ (Zₓ₁₃ - Zₓ₁₁)
kₓ₄ = - 2 pₓ₀ (2 (6 (aₓ₁ aₓ₃ + aₓ₂ aₓ₄) + Zₓ₃₂ e₀²) + p₁ Zₓ₃₂)
kₓ₅ = - 2 pₓ₀ (Zₓ₃ - Zₓ₁)
kₓ₆ = - 2 pₓ₀ (- 21 - 9 e₀²) eₓ
kₓ₇ = 2 pₓ₂ Zₓ₃₂
kₓ₈ = 2 pₓ₂ (Zₓ₃₃ - Zₓ₃₁)
kₓ₉ = - 18 pₓ₂ eₓ
kₓ₁₀ = - 2 pₓ₁ (6 (aₓ₄ aₓ₅ + aₓ₂ aₓ₆) + e₀² (24 (Xₓ₂ Xₓ₅ + Xₓ₁ Xₓ₆) - 6 (Xₓ₄ Xₓ₇ + Xₓ₃ Xₓ₈)))
kₓ₁₁ = - 2 pₓ₁ (Zₓ₂₃ - Zₓ₂₁)
İₓ = pₓ₁ nₓ (Zₓ₁₁ + Zₓ₁₃)
ėₓ = pₓ₃ nₓ (Xₓ₁ Xₓ₃ + Xₓ₂ Xₓ₄)
ω̇ₓ = pₓ₂ nₓ (Zₓ₃₁ + Zₓ₃₃ - 6) - cos I₀ Ω̇ₓ
Ṁₓ = - nₓ pₓ₀ (Zₓ₁ + Zₓ₃ - 14 - 6 e₀²)
Defined only if n₀" ≤ 2π / 225
(deep space) and either:
0.0034906585 < n₀" < 0.0052359877
(geosynchronous)8.26 × 10⁻³ ≤ n₀" ≤ 9.24 × 10⁻³
ande₀ ≥ 0.5
(Molniya)
The sidereal time θ₀
at epoch can be calculated with either the IAU formula:
c₂₀₀₀ = y₂₀₀₀ / 100
θ₀ = ¹/₂₄₀ (π / 180) (- 6.2 × 10⁻⁶ c₂₀₀₀³ + 0.093104 c₂₀₀₀²
+ (876600 × 3600 + 8640184.812866) c₂₀₀₀ + 67310.54841) mod 2π
or the AFSPC formula:
d₁₉₇₀ = 365.25 (y₂₀₀₀ + 30) + 1
θ₀ = 1.7321343856509374 + 1.72027916940703639 × 10⁻² ⌊d₁₉₇₀ + 10⁻⁸⌋
+ (1.72027916940703639 × 10⁻² + 2π) (d₁₉₇₀ - ⌊d₁₉₇₀ + 10⁻⁸⌋)
+ 5.07551419432269442 × 10⁻¹⁵ d₁₉₇₀² mod 2π
λ₀ = │ M₀ + Ω₀ + ω₀ − θ₀ rem 2π if geosynchronous
│ M₀ + 2 Ω₀ − 2 θ₀ rem 2π otherwise
λ̇₀ = │ p₁₅ + (k₁₄ + p₁₄) − θ̇ + (Ṁₛ + Ṁₗ) + (ω̇ₛ + ω̇ₗ) + (Ω̇ₛ + Ω̇ₗ) - n₀" if geosynchronous
│ p₁₅ + (Ṁₛ + Ṁₗ) + 2 (p₁₄ + (Ω̇ₛ + Ω̇ₗ) - θ̇) - n₀" otherwise
Defined only if n₀" ≤ 2π / 225
(deep space) and 0.0034906585 < n₀" < 0.0052359877
(geosynchronous orbit).
p₁₇ = 3 (n / a₀")²
𝛿ᵣ₁ = p₁₇ (¹⁵/₁₆ sin²I₀ (1 + 3 p₁) - ³/₄ (1 + p₁))
(1 + 2 e₀²) 2.1460748 × 10⁻⁶ / a₀"²
𝛿ᵣ₂ = 2 p₁₇ (³/₄ (1 + p₁)²)
(1 + e₀² (- ⁵/₂ + ¹³/₁₆ e₀²)) 1.7891679 × 10⁻⁶
𝛿ᵣ₃ = 3 p₁₇ (¹⁵/₈ (1 + p₁)³) (1 + e₀² (- 6 + 6.60937 e₀²))
2.2123015 × 10⁻⁷ / a₀"²
Defined only if n₀" ≤ 2π / 225
(deep space) and 8.26 × 10⁻³ ≤ n₀" ≤ 9.24 × 10⁻³
and e₀ ≥ 0.5
(Molniya).
p₁₈ = 3 n₀"² / a₀"²
p₁₉ = p₁₈ / a₀"
p₂₀ = p₁₉ / a₀"
p₂₁ = p₂₀ / a₀"
F₂₂₀ = ³/₄ (1 + 2 p₁ + p₁²)
G₂₁₁ = │ 3.616 - 13.247 e₀ + 16.29 e₀² if e₀ ≤ 0.65
│ - 72.099 + 331.819 e₀ - 508.738 e₀² + 266.724 e₀³ otherwise
G₃₁₀ = │ - 19.302 + 117.39 e₀ - 228.419 e₀² + 156.591 e₀³ if e₀ ≤ 0.65
│ - 346.844 + 1582.851 e₀ - 2415.925 e₀² + 1246.113 e₀³ otherwise
G₃₂₂ = │ - 18.9068 + 109.7927 e₀ - 214.6334 e₀² + 146.5816 e₀³ if e₀ ≤ 0.65
│ - 342.585 + 1554.908 e₀ - 2366.899 e₀² + 1215.972 e₀³ otherwise
G₄₁₀ = │ - 41.122 + 242.694 e₀ - 471.094 e₀² + 313.953 e₀³ if e₀ ≤ 0.65
│ - 1052.797 + 4758.686 e₀ - 7193.992 e₀² + 3651.957 e₀³ otherwise
G₄₂₂ = │ - 146.407 + 841.88 e₀ - 1629.014 e₀² + 1083.435 e₀³ if e₀ ≤ 0.65
│ - 3581.69 + 16178.11 e₀ - 24462.77 e₀² + 12422.52 e₀³ otherwise
G₅₂₀ = │ - 532.114 + 3017.977 e₀ - 5740.032 e₀² + 3708.276 e₀³ if e₀ ≤ 0.65
│ 1464.74 - 4664.75 e₀ + 3763.64 e₀² if 0.65 < e₀ < 0.715
│ - 5149.66 + 29936.92 e₀ - 54087.36 e₀² + 31324.56 e₀³ otherwise
G₅₃₂ = │ - 853.666 + 4690.25 e₀ - 8624.77 e₀² + 5341.4 e₀³ if e₀ < 0.7
│ - 40023.88 + 170470.89 e₀ - 242699.48 e₀² + 115605.82 e₀³ otherwise
G₅₂₁ = │ - 822.71072 + 4568.6173 e₀ - 8491.4146 e₀² + 5337.524 e₀³ if e₀ < 0.7
│ - 51752.104 + 218913.95 e₀ - 309468.16 e₀² + 146349.42 e₀³ otherwise
G₅₃₃ = │ - 919.2277 + 4988.61 e₀ - 9064.77 e₀² + 5542.21 e₀³ if e₀ < 0.7
│ - 37995.78 + 161616.52 e₀ - 229838.2 e₀² + 109377.94 e₀³ otherwise
D₂₂₀₋₁ = p₁₈ 1.7891679 × 10⁻⁶ F₂₂₀ (- 0.306 - 0.44 (e₀ - 0.64))
D₂₂₁₁ = p₁₈ 1.7891679 × 10⁻⁶ (³/₂ sin²I₀) G₂₁₁
D₃₂₁₀ = p₁₉ 3.7393792 × 10⁻⁷ (¹⁵/₈ sin I₀ (1 - 2 p₁ - 3 p₁²)) G₃₁₀
D₃₂₂₂ = p₁₉ 3.7393792 × 10⁻⁷ (- ¹⁵/₈ sin I₀ (1 + 2 p₁ - 3 p₁²)) G₃₂₂
D₄₄₁₀ = 2 p₂₀ 7.3636953 × 10⁻⁹ (35 sin²I₀ F₂₂₀) G₄₁₀
D₄₄₂₂ = 2 p₂₀ 7.3636953 × 10⁻⁹ (³¹⁵/₈ sin⁴I₀) G₄₂₂
D₅₂₂₀ = p₂₁ 1.1428639 × 10⁻⁷ (³¹⁵/₃₂ sin I₀
(sin²I₀ (1 - 2 p₁ - 5 p₁²)
+ 0.33333333 (- 2 + 4 p₁ + 6 p₁²))) G₅₂₀
D₅₂₃₂ = p₂₁ 1.1428639 × 10⁻⁷ (sin I₀
(4.92187512 sin²I₀ (- 2 - 4 p₁ + 10 p₁²)
+ 6.56250012 (1 + p₁ - 3 p₁²))) G₅₃₂
D₅₄₂₁ = 2 p₂₁ 2.1765803 × 10⁻⁹ (⁹⁴⁵/₃₂ sin I₀
(2 - 8 p₁ + p₁² (- 12 + 8 p₁ + 10 p₁²))) G₅₂₁
D₅₄₃₃ = 2 p₂₁ 2.1765803 × 10⁻⁹ (⁹⁴⁵/₃₂ sin I₀
(- 2 - 8 p₁ + p₁² (12 + 8 p₁ - 10 p₁²))) G₅₃₃
The following values depend on the propagation time t
(minutes since epoch).
Named conditions have the following meaning:
near earth
:n₀" ≤ 2π / 225
low altitude near earth
:near earth
andp₃ < 220 / (aₑ + 1)
high altitude near earth
:near earth
andp₃ ≥ 220 / (aₑ + 1)
elliptic high altitude near earth
:high altitude near earth
ande₀ > 10⁻⁴
non-elliptic near earth
:low altitude near earth
orhigh altitude near earth
ande₀ ≤ 10⁻⁴
deep space
:n₀" > 2π / 225
non-Lyddane deep space
:deep space
andI ≥ 0.2
Lyddane deep space
:deep space
andI < 0.2
AFSPC Lyddane deep space
:Lyddane deep space
and use the same expression as the original AFSPC implementation, with anω
discontinuity atp₂₂ = 0
p₂₂ = Ω₀ + Ω̇ t + k₀ t²
p₂₃ = ω₀ + ω̇ t
I = │ I₀ if near earth
│ I₀ + İ t + (δIₛ + δIₗ) otherwise
Ω = │ p₂₂ if near earth
│ p₂₂ + (pₛ₅ + pₗ₅) / sin I if non-Lyddane deep space
│ p₃₀ + 2π if Lyddane deep space and p₃₀ + π < p₂₂ rem 2π
│ p₃₀ - 2π if Lyddane deep space and p₃₀ - π > p₂₂ rem 2π
│ p₃₀ otherwise
e = │ 10⁻⁶ if near earth and p₂₇ < 10⁻⁶
│ p₂₇ if near earth and p₂₇ ≥ 10⁻⁶
│ 10⁻⁶ + (δeₛ + δeₗ) if deep space and p₃₁ < 10⁻⁶
│ p₃₁ + (δeₛ + δeₗ) otherwise
ω = │ p₂₃ - p₂₅ if elliptic high altitude near earth
│ p₂₃ if non-elliptic near earth
│ p₂₃ + (pₛ₄ + pₗ₄) - cos I (pₛ₅ + pₗ₅) / sin I if non-Lyddane deep space
│ p₂₃ + (pₛ₄ + pₗ₄) + cos I ((p₂₂ rem 2π) - Ω)
│ - (δIₛ + δIₗ) (p₂₂ mod 2π) sin I if AFSPC Lyddane deep space
│ p₂₃ + (pₛ₄ + pₗ₄) + cos I ((p₂₂ rem 2π) - Ω)
│ - (δIₛ + δIₗ) (p₂₂ rem 2π) sin I otherwise
M = │ p₂₆ + n₀" (k₁ t² + k₈ t³ + t⁴ (k₉ + t k₁₀) if high altitude near earth
│ p₂₄ + n₀" k₁ t² if low altitude near earth
│ p₂₉ + (δMₛ + δMₗ) + n₀" k₁ t² otherwise
a = │ a₀" (1 - C₁ t - D₂ t² - D₃ t³ - D₄ t⁴)² if high altitude near earth
│ a₀" (1 - C₁ t)² if low altitude near earth
│ p₂₈ (1 - C₁ t)² otherwise
n = kₑ / a³ᐟ²
p₃₂ = │ k₂ if near earth
│ 1 J₃
│ - - -- sin I othewise
│ 2 J₂
p₃₃ = │ k₃ if near earth
│ 1 - cos²I othewise
p₃₄ = │ k₄ if near earth
│ 7 cos²I - 1 otherwise
p₃₅ = │ k₅ if near earth
│ 1 J₃ 3 + 5 cos I
│ - - -- sin I ----------- if deep space and |1 + cos I| > 1.5 × 10⁻¹²
│ 4 J₂ 1 + cos I
│ 1 J₃ 3 + 5 cos I
│ - - -- sin I ----------- otherwise
│ 4 J₂ 1.5 × 10⁻¹²
p₃₆ = │ k₆ if near earth
│ 3 cos²I - 1 otherwise
p₃₇ = 1 / (a (1 - e²))
aₓₙ = e cos ω
aᵧₙ = e sin ω + p₃₇ p₃₂
p₃₈ = M + ω + p₃₇ p₃₅ aₓₙ rem 2π
(E + ω)₀ = p₃₈
p₃₈ - aᵧₙ cos (E + ω)ᵢ + aₓₙ sin (E + ω)ᵢ - (E + ω)ᵢ
Δ(E + ω)ᵢ = ---------------------------------------------------
1 - cos (E + ω)ᵢ aₓₙ - sin (E + ω)ᵢ aᵧₙ
(E + ω)ᵢ₊₁ = (E + ω)ᵢ + Δ(E + ω)ᵢ|[-0.95, 0.95]
E + ω = │ (E + ω)₁₀ if ∀ j ∈ [0, 9], Δ(E + ω)ⱼ ≥ 10⁻¹²
│ (E + ω)ⱼ otherwise, with j the smallest integer | Δ(E + ω)ⱼ < 10⁻¹²
p₃₉ = aₓₙ² + aᵧₙ²
pₗ = a (1 - p₃₉)
p₄₀ = aₓₙ sin(E + ω) - aᵧₙ cos(E + ω)
r = a (1 - (aₓₙ cos(E + ω) + aᵧₙ sin(E + ω)))
ṙ = a¹ᐟ² p₄₀ / r
β = (1 - p₃₉)¹ᐟ²
p₄₁ = p₄₀ / (1 + β)
p₄₂ = a / r (sin(E + ω) - aᵧₙ - aₓₙ p₄₁)
p₄₃ = a / r (cos(E + ω) - aₓₙ + aᵧₙ p₄₁)
p₄₂
u = tan⁻¹ ---
p₄₃
p₄₄ = 2 p₄₃ p₄₂
p₄₅ = 1 - 2 p₄₂²
p₄₆ = (¹/₂ J₂ / pₗ) / pₗ
rₖ = r (1 - ³/₂ p₄₆ β p₃₆) + ¹/₂ (¹/₂ J₂ / pₗ) p₃₃ p₄₅
uₖ = u - ¹/₄ p₄₆ p₃₄ p₄₄
Ωₖ = Ω + ³/₂ p₄₆ cos I p₄₄
Iₖ = I + ³/₂ p₄₆ cos I sin I p₄₅
ṙₖ = ṙ + n (¹/₂ J₂ / pₗ) p₃₃ / kₑ
rḟₖ = pₗ¹ᐟ² / r + n (¹/₂ J₂ / pₗ) (p₃₃ p₄₅ + ³/₂ p₃₆) / kₑ
u₀ = - sin Ωₖ cos Iₖ sin uₖ + cos Ωₖ cos uₖ
u₁ = cos Ωₖ cos Iₖ sin uₖ + sin Ωₖ cos uₖ
u₂ = sin Iₖ sin uₖ
r₀ = rₖ u₀ aₑ
r₁ = rₖ u₁ aₑ
r₂ = rₖ u₂ aₑ
ṙ₀ = (ṙₖ u₀ + rḟₖ (- sin Ωₖ cos Iₖ cos uₖ - cos Ωₖ sin uₖ)) aₑ kₑ / 60
ṙ₁ = (ṙₖ u₁ + rḟₖ (cos Ωₖ cos Iₖ cos uₖ - sin Ωₖ sin uₖ)) aₑ kₑ / 60
ṙ₂ = (ṙₖ u₂ + rḟₖ (sin Iₖ cos uₖ)) aₑ kₑ / 60
Defined only if n₀" > 2π / 225
(near earth).
p₂₄ = M₀ + Ṁ t
p₂₇ = | e₀ - (C₄ t + C₅ (sin p₂₆ - k₇)) if high altitude
| e₀ - C₄ t otherwise
Defined only if n₀" > 2π / 225
(near earth) and p₃ ≥ 220 / (aₑ + 1)
(high altitude).
elliptic
means e₀ > 10⁻⁴
.
p₂₅ = k₁₃ ((1 + η cos p₂₄)³ - k₁₁) + k₁₂ t
p₂₆ = │ p₂₄ + p₂₅ if elliptic
│ p₂₄ otherwise
Defined only if n₀" ≤ 2π / 225
(deep space).
p₂₈ = │ (kₑ / (nⱼ + ṅⱼ (t - tⱼ) + ¹/₂ n̈ⱼ (t - tⱼ)²))²ᐟ³ if geosynchronous or Molniya
│ a₀" otherwise
p₂₉ = │ λⱼ + λ̇ⱼ (t - tⱼ) + ¹/₂ ṅᵢ (t - tⱼ)² - p₂₂ - p₂₃ + θ if geosynchronous
│ λⱼ + λ̇ⱼ (t - tⱼ) + ¹/₂ ṅᵢ (t - tⱼ)² - 2 p₂₂ + 2 θ if Molniya
│ M₀ + Ṁ t otherwise
j is │ the largest positive integer | tⱼ ≤ t if t > 0
│ the smallest negative integer | tⱼ ≥ t if t < 0
│ 0 otherwise
p₃₁ = e₀ + ė t - C₄ t
Defined only if n₀" ≤ 2π / 225
(deep space).
The following variables are evaluated for two third bodies, the Sun (solar perturbations s
) and the Moon (lunar perturbations l
). Variables specific to the third body are annotated with x
. In other sections, x
is either s
or l
.
Mₓ = Mₓ₀ + nₓ t
fₓ = Mₓ + 2 eₓ sin Mₓ
Fₓ₂ = ¹/₂ sin²fₓ - ¹/₄
Fₓ₃ = - ¹/₂ sin fₓ cos fₓ
δeₓ = kₓ₀ Fₓ₂ + kₓ₁ Fₓ₃
δIₓ = kₓ₂ Fₓ₂ + kₓ₃ Fₓ₃
δMₓ = kₓ₄ Fₓ₂ + kₓ₅ Fₓ₃ + kₓ₆ sin fₓ
pₓ₄ = kₓ₇ Fₓ₂ + kₓ₈ Fₓ₃ + kₓ₉ sin fₓ
pₓ₅ = kₓ₁₀ Fₓ₂ + kₓ₁₁ Fₓ₃
Defined only if n₀" ≤ 2π / 225
(deep space) and either:
0.0034906585 < n₀" < 0.0052359877
(geosynchronous)8.26 × 10⁻³ ≤ n₀" ≤ 9.24 × 10⁻³
ande₀ ≥ 0.5
(Molniya)
θ = θ₀ + 4.37526908801129966 × 10⁻³ t rem 2π
Δt = │ |Δt| if t > 0
│ -|Δt| if t < 0
│ 0 otherwise
λ̇ᵢ = nᵢ + λ̇₀
ṅᵢ = │ 𝛿ᵣ₁ sin(λᵢ - λ₃₁) + 𝛿ᵣ₂ sin(2 (λᵢ - λ₂₂)) + 𝛿ᵣ₃ sin(3 (λᵢ - λ₃₃)) if geosynchronous
│ Σ₍ₗₘₚₖ₎ Dₗₘₚₖ sin((l - 2 p) ωᵢ + m / 2 λᵢ - Gₗₘ) otherwise
n̈ᵢ = │ (𝛿ᵣ₁ cos(λᵢ - λ₃₁) + 𝛿ᵣ₂ cos(2 (λᵢ - λ₂₂)) + 𝛿ᵣ₃ cos(3 (λᵢ - λ₃₃))) λ̇ᵢ if geosynchronous
│ (Σ₍ₗₘₚₖ₎ m / 2 Dₗₘₚₖ cos((l - 2 p) ωᵢ + m / 2 λᵢ - Gₗₘ)) λ̇ᵢ otherwise
(l, m, p, k) ∈ {(2, 2, 0, -1), (2, 2, 1, 1), (3, 2, 1, 0),
(3, 2, 2, 2), (4, 4, 1, 0), (4, 4, 2, 2), (5, 2, 2, 0),
(5, 2, 3, 2), (5, 4, 2, 1), (5, 4, 3, 3)}
tᵢ₊₁ = tᵢ + Δt
nᵢ₊₁ = nᵢ + ṅᵢ Δt + n̈ᵢ (Δt² / 2)
λᵢ₊₁ = λᵢ + λ̇ᵢ Δt + ṅᵢ (Δt² / 2)
Defined only if n₀" ≤ 2π / 225
(deep space) and I < 0.2
(Lyddane).
sin I sin p₂₂ + (pₛ₅ + pₗ₅) cos p₂₂ + (δIₛ + δIₗ) cos I sin p₂₂
p₃₀ = tan⁻¹ -------------------------------------------------------------
sin I cos p₂₂ - (pₛ₅ + pₗ₅) sin p₂₂ + (δIₛ + δIₗ) cos I cos p₂₂
[1] David A. Vallado, Paul Crawford, R. S. Hujsak and T. S. Kelso, "Revisiting Spacetrack Report #3", presented at the AIAA/AAS Astrodynamics Specialist Conference, Keystone, CO, 2006 August 21–24, https://doi.org/10.2514/6.2006-6753
[2] F. R. Hoots, P. W. Schumacher Jr. and R. A. Glover, "History of Analytical Orbit Modeling in the U. S. Space Surveillance System", Journal of Guidance, Control, and Dynamics, 27(2), 174–185, 2004, https://doi.org/10.2514/1.9161
[3] F. R. Hoots and R. L. Roehrich, "Spacetrack Report No. 3: Models for propagation of NORAD element sets", U.S. Air Force Aerospace Defense Command, Colorado Springs, CO, 1980, https://www.celestrak.com/NORAD/documentation/
[4] R. S. Hujsak, "A Restricted Four Body Solution for Resonating Satellites Without Drag", Project SPACETRACK, Rept. 1, U.S. Air Force Aerospace Defense Command, Colorado Springs, CO, Nov. 1979, https://doi.org/10.21236/ada081263