-
Notifications
You must be signed in to change notification settings - Fork 43
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
179 additions
and
0 deletions.
There are no files selected for viewing
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,179 @@ | ||
import os | ||
|
||
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" | ||
|
||
import keras.layers as KL | ||
import numpy as np | ||
import tensorflow as tf | ||
from keras.models import Model | ||
|
||
from nobrainer.ext.lab2im import edit_tensors as l2i_et | ||
from nobrainer.ext.lab2im import layers, utils | ||
from nobrainer.ext.lab2im.edit_volumes import get_ras_axes | ||
from nobrainer.ext.SynthSeg.model_inputs import build_model_inputs | ||
from nobrainer.models.labels_to_image_model import get_shapes | ||
|
||
|
||
def sample_model( | ||
labels_shape, | ||
n_channels, | ||
generation_labels, | ||
output_labels, | ||
n_neutral_labels, | ||
atlas_res, | ||
target_res, | ||
output_shape=None, | ||
output_div_by_n=None, | ||
flipping=True, | ||
aff=None, | ||
scaling_bounds=0.2, | ||
rotation_bounds=15, | ||
shearing_bounds=0.012, | ||
translation_bounds=False, | ||
nonlin_std=3.0, | ||
nonlin_scale=0.0625, | ||
randomise_res=False, | ||
max_res_iso=4.0, | ||
max_res_aniso=8.0, | ||
data_res=None, | ||
thickness=None, | ||
bias_field_std=0.5, | ||
bias_scale=0.025, | ||
return_gradients=False, | ||
): | ||
|
||
# reformat resolutions | ||
labels_shape = utils.reformat_to_list(labels_shape) | ||
n_dims, _ = utils.get_dims(labels_shape) | ||
atlas_res = utils.reformat_to_n_channels_array(atlas_res, n_dims, n_channels) | ||
atlas_res = atlas_res[0] | ||
|
||
# define model inputs | ||
labels_input = KL.Input( | ||
shape=labels_shape + [1], name="labels_input", dtype="int32" | ||
) | ||
means_input = KL.Input( | ||
shape=list(generation_labels.shape) + [n_channels], name="means_input" | ||
) | ||
stds_input = KL.Input( | ||
shape=list(generation_labels.shape) + [n_channels], name="std_devs_input" | ||
) | ||
list_inputs = [labels_input, means_input, stds_input] | ||
|
||
max_res_iso = np.array( | ||
utils.reformat_to_list(max_res_iso, length=n_dims, dtype="float") | ||
) | ||
max_res_aniso = np.array( | ||
utils.reformat_to_list(max_res_aniso, length=n_dims, dtype="float") | ||
) | ||
output1 = layers.SampleResolution(atlas_res, max_res_iso, max_res_aniso)( | ||
means_input | ||
) | ||
|
||
brain_model = Model(inputs=list_inputs, outputs=output1) | ||
return brain_model | ||
|
||
|
||
if __name__ == "__main__": | ||
for randomise_res_value in [True]: | ||
labels_dir = ( | ||
"/om2/user/hgazula/SynthSeg/data/training_label_maps/training_seg_01.nii.gz" | ||
) | ||
|
||
labels_paths = utils.list_images_in_folder(labels_dir) | ||
subjects_prob = None | ||
labels_shape, aff, n_dims, _, header, atlas_res = utils.get_volume_info( | ||
labels_paths[0], aff_ref=np.eye(4) | ||
) | ||
|
||
n_channels = 1 | ||
|
||
generation_labels, _ = utils.get_list_labels(labels_dir=labels_dir) | ||
output_labels = generation_labels | ||
n_neutral_labels = generation_labels.shape[0] | ||
target_res = None | ||
batchsize = 1 | ||
flipping = True | ||
output_shape = None | ||
output_div_by_n = None | ||
|
||
prior_distributions = "uniform" | ||
|
||
generation_classes = np.arange(generation_labels.shape[0]) | ||
prior_means = None | ||
prior_stds = None | ||
use_specific_stats_for_channel = False | ||
|
||
mix_prior_and_random = False | ||
|
||
scaling_bounds = 0.2 | ||
rotation_bounds = 15 | ||
shearing_bounds = 0.012 | ||
translation_bounds = False | ||
|
||
nonlin_std = 4.0 | ||
nonlin_scale = 0.04 | ||
|
||
randomise_res = randomise_res_value | ||
print("randomise_res", randomise_res) | ||
|
||
max_res_iso = 4.0 | ||
max_res_aniso = 8.0 | ||
|
||
data_res = None | ||
thickness = None | ||
|
||
bias_field_std = 0.7 | ||
bias_scale = 0.025 | ||
return_gradients = False | ||
|
||
sam_mod = sample_model( | ||
labels_shape, | ||
n_channels, | ||
generation_labels, | ||
output_labels, | ||
n_neutral_labels, | ||
atlas_res, | ||
target_res, | ||
output_shape=None, | ||
output_div_by_n=None, | ||
flipping=True, | ||
aff=None, | ||
scaling_bounds=0.2, | ||
rotation_bounds=15, | ||
shearing_bounds=0.012, | ||
translation_bounds=False, | ||
nonlin_std=3.0, | ||
nonlin_scale=0.0625, | ||
randomise_res=False, | ||
max_res_iso=4.0, | ||
max_res_aniso=8.0, | ||
data_res=None, | ||
thickness=None, | ||
bias_field_std=0.5, | ||
bias_scale=0.025, | ||
return_gradients=False, | ||
) | ||
|
||
model_inputs_generator = build_model_inputs( | ||
path_label_maps=labels_paths, | ||
n_labels=len(generation_labels), | ||
batchsize=batchsize, | ||
n_channels=n_channels, | ||
subjects_prob=subjects_prob, | ||
generation_classes=generation_classes, | ||
prior_means=prior_means, | ||
prior_stds=prior_stds, | ||
prior_distributions=prior_distributions, | ||
use_specific_stats_for_channel=use_specific_stats_for_channel, | ||
mix_prior_and_random=mix_prior_and_random, | ||
) | ||
|
||
model_inputs = next(model_inputs_generator) | ||
print("start prediction") | ||
# output = lab_to_im_model(model_inputs) | ||
# sam_mod.summary() | ||
output = sam_mod.predict(model_inputs) | ||
|
||
# print(image.shape, labels.shape) | ||
print("Success") |