diff --git a/nobrainer/layers/DepthwiseConv3d.py b/nobrainer/layers/DepthwiseConv3d.py deleted file mode 100644 index 2cfd0efa..00000000 --- a/nobrainer/layers/DepthwiseConv3d.py +++ /dev/null @@ -1,338 +0,0 @@ -""" -Directly taken from -https://github.com/alexandrosstergiou/keras-DepthwiseConv3D/blob/master/DepthwiseConv3D.py -This is a modification of the SeparableConv3D code in Keras, -to perform just the Depthwise Convolution (1st step) of the -Depthwise Separable Convolution layer. -""" -from __future__ import absolute_import - -from keras import backend as K -from keras import constraints, initializers, regularizers -from keras.backend.tensorflow_backend import ( - _preprocess_conv3d_input, - _preprocess_padding, -) -from keras.engine import InputSpec -from keras.layers import Conv3D -from keras.legacy.interfaces import conv3d_args_preprocessor -from keras.utils import conv_utils -import tensorflow as tf - - -def depthwise_conv3d_args_preprocessor(args, kwargs): - converted = [] - - if "init" in kwargs: - init = kwargs.pop("init") - kwargs["depthwise_initializer"] = init - converted.append(("init", "depthwise_initializer")) - - args, kwargs, _converted = conv3d_args_preprocessor(args, kwargs) - return args, kwargs, converted + _converted - - -# legacy_depthwise_conv3d_support = generate_legacy_interface( -# allowed_positional_args=["filters", "kernel_size"], -# conversions=[ -# ("nb_filter", "filters"), -# ("subsample", "strides"), -# ("border_mode", "padding"), -# ("dim_ordering", "data_format"), -# ("b_regularizer", "bias_regularizer"), -# ("b_constraint", "bias_constraint"), -# ("bias", "use_bias"), -# ], -# value_conversions={ -# "dim_ordering": { -# "tf": "channels_last", -# "th": "channels_first", -# "default": None, -# } -# }, -# preprocessor=depthwise_conv3d_args_preprocessor, -# ) - - -class DepthwiseConv3D(Conv3D): - """Depthwise 3D convolution. - Depth-wise part of separable convolutions consist in performing - just the first step/operation - (which acts on each input channel separately). - It does not perform the pointwise convolution (second step). - The `depth_multiplier` argument controls how many - output channels are generated per input channel in the depthwise step. - # Arguments - kernel_size: An integer or tuple/list of 3 integers, specifying the - depth, width and height of the 3D convolution window. - Can be a single integer to specify the same value for - all spatial dimensions. - strides: An integer or tuple/list of 3 integers, - specifying the strides of the convolution along the depth, width and height. - Can be a single integer to specify the same value for - all spatial dimensions. - padding: one of `"valid"` or `"same"` (case-insensitive). - depth_multiplier: The number of depthwise convolution output channels - for each input channel. - The total number of depthwise convolution output - channels will be equal to `filterss_in * depth_multiplier`. - groups: The depth size of the convolution (as a variant of the original Depthwise conv) - data_format: A string, - one of `channels_last` (default) or `channels_first`. - The ordering of the dimensions in the inputs. - `channels_last` corresponds to inputs with shape - `(batch, height, width, channels)` while `channels_first` - corresponds to inputs with shape - `(batch, channels, height, width)`. - It defaults to the `image_data_format` value found in your - Keras config file at `~/.keras/keras.json`. - If you never set it, then it will be "channels_last". - activation: Activation function to use - (see [activations](../activations.md)). - If you don't specify anything, no activation is applied - (ie. "linear" activation: `a(x) = x`). - use_bias: Boolean, whether the layer uses a bias vector. - depthwise_initializer: Initializer for the depthwise kernel matrix - (see [initializers](../initializers.md)). - bias_initializer: Initializer for the bias vector - (see [initializers](../initializers.md)). - depthwise_regularizer: Regularizer function applied to - the depthwise kernel matrix - (see [regularizer](../regularizers.md)). - bias_regularizer: Regularizer function applied to the bias vector - (see [regularizer](../regularizers.md)). - dialation_rate: List of ints. - Defines the dilation factor for each dimension in the - input. Defaults to (1,1,1) - activity_regularizer: Regularizer function applied to - the output of the layer (its "activation"). - (see [regularizer](../regularizers.md)). - depthwise_constraint: Constraint function applied to - the depthwise kernel matrix - (see [constraints](../constraints.md)). - bias_constraint: Constraint function applied to the bias vector - (see [constraints](../constraints.md)). - # Input shape - 5D tensor with shape: - `(batch, depth, channels, rows, cols)` if data_format='channels_first' - or 5D tensor with shape: - `(batch, depth, rows, cols, channels)` if data_format='channels_last'. - # Output shape - 5D tensor with shape: - `(batch, filters * depth, new_depth, new_rows, new_cols)` if data_format='channels_first' - or 4D tensor with shape: - `(batch, new_depth, new_rows, new_cols, filters * depth)` if data_format='channels_last'. - `rows` and `cols` values might have changed due to padding. - """ - - # @legacy_depthwise_conv3d_support - def __init__( - self, - kernel_size, - strides=(1, 1, 1), - padding="valid", - depth_multiplier=1, - groups=None, - data_format=None, - activation=None, - use_bias=True, - depthwise_initializer="glorot_uniform", - bias_initializer="zeros", - dilation_rate=(1, 1, 1), - depthwise_regularizer=None, - bias_regularizer=None, - activity_regularizer=None, - depthwise_constraint=None, - bias_constraint=None, - **kwargs - ): - super(DepthwiseConv3D, self).__init__( - filters=None, - kernel_size=kernel_size, - strides=strides, - padding=padding, - data_format=data_format, - activation=activation, - use_bias=use_bias, - bias_regularizer=bias_regularizer, - dilation_rate=dilation_rate, - activity_regularizer=activity_regularizer, - bias_constraint=bias_constraint, - **kwargs - ) - self.depth_multiplier = depth_multiplier - self.groups = groups - self.depthwise_initializer = initializers.get(depthwise_initializer) - self.depthwise_regularizer = regularizers.get(depthwise_regularizer) - self.depthwise_constraint = constraints.get(depthwise_constraint) - self.bias_initializer = initializers.get(bias_initializer) - self.dilation_rate = dilation_rate - self._padding = _preprocess_padding(self.padding) - self._strides = (1,) + self.strides + (1,) - self._data_format = "NDHWC" - self.input_dim = None - - def build(self, input_shape): - if len(input_shape) < 5: - raise ValueError( - "Inputs to `DepthwiseConv3D` should have rank 5. " - "Received input shape:", - str(input_shape), - ) - if self.data_format == "channels_first": - channel_axis = 1 - else: - channel_axis = -1 - if input_shape[channel_axis] is None: - raise ValueError( - "The channel dimension of the inputs to " - "`DepthwiseConv3D` " - "should be defined. Found `None`." - ) - self.input_dim = int(input_shape[channel_axis]) - - if self.groups is None: - self.groups = self.input_dim - - if self.groups > self.input_dim: - raise ValueError( - "The number of groups cannot exceed the number of channels" - ) - - if self.input_dim % self.groups != 0: - raise ValueError( - "Warning! The channels dimension is not divisible by the group size chosen" - ) - - depthwise_kernel_shape = ( - self.kernel_size[0], - self.kernel_size[1], - self.kernel_size[2], - self.input_dim, - self.depth_multiplier, - ) - - self.depthwise_kernel = self.add_weight( - shape=depthwise_kernel_shape, - initializer=self.depthwise_initializer, - name="depthwise_kernel", - regularizer=self.depthwise_regularizer, - constraint=self.depthwise_constraint, - ) - - if self.use_bias: - self.bias = self.add_weight( - shape=(self.groups * self.depth_multiplier,), - initializer=self.bias_initializer, - name="bias", - regularizer=self.bias_regularizer, - constraint=self.bias_constraint, - ) - else: - self.bias = None - # Set input spec. - self.input_spec = InputSpec(ndim=5, axes={channel_axis: self.input_dim}) - self.built = True - - def call(self, inputs, training=None): - inputs = _preprocess_conv3d_input(inputs, self.data_format) - - if self.data_format == "channels_last": - dilation = (1,) + self.dilation_rate + (1,) - else: - dilation = self.dilation_rate + (1,) + (1,) - - if self._data_format == "NCDHW": - outputs = tf.concat( - [ - tf.nn.conv3d( - inputs[0][:, i : i + self.input_dim // self.groups, :, :, :], - self.depthwise_kernel[ - :, :, :, i : i + self.input_dim // self.groups, : - ], - strides=self._strides, - padding=self._padding, - dilations=dilation, - data_format=self._data_format, - ) - for i in range(0, self.input_dim, self.input_dim // self.groups) - ], - axis=1, - ) - - else: - outputs = tf.concat( - [ - tf.nn.conv3d( - inputs[0][:, :, :, :, i : i + self.input_dim // self.groups], - self.depthwise_kernel[ - :, :, :, i : i + self.input_dim // self.groups, : - ], - strides=self._strides, - padding=self._padding, - dilations=dilation, - data_format=self._data_format, - ) - for i in range(0, self.input_dim, self.input_dim // self.groups) - ], - axis=-1, - ) - - if self.bias is not None: - outputs = K.bias_add(outputs, self.bias, data_format=self.data_format) - - if self.activation is not None: - return self.activation(outputs) - - return outputs - - def compute_output_shape(self, input_shape): - if self.data_format == "channels_first": - depth = input_shape[2] - rows = input_shape[3] - cols = input_shape[4] - out_filters = self.groups * self.depth_multiplier - elif self.data_format == "channels_last": - depth = input_shape[1] - rows = input_shape[2] - cols = input_shape[3] - out_filters = self.groups * self.depth_multiplier - - depth = conv_utils.conv_output_length( - depth, self.kernel_size[0], self.padding, self.strides[0] - ) - - rows = conv_utils.conv_output_length( - rows, self.kernel_size[1], self.padding, self.strides[1] - ) - - cols = conv_utils.conv_output_length( - cols, self.kernel_size[2], self.padding, self.strides[2] - ) - - if self.data_format == "channels_first": - return (input_shape[0], out_filters, depth, rows, cols) - - elif self.data_format == "channels_last": - return (input_shape[0], depth, rows, cols, out_filters) - - def get_config(self): - config = super(DepthwiseConv3D, self).get_config() - config.pop("filters") - config.pop("kernel_initializer") - config.pop("kernel_regularizer") - config.pop("kernel_constraint") - config["depth_multiplier"] = self.depth_multiplier - config["depthwise_initializer"] = initializers.serialize( - self.depthwise_initializer - ) - config["depthwise_regularizer"] = regularizers.serialize( - self.depthwise_regularizer - ) - config["depthwise_constraint"] = constraints.serialize( - self.depthwise_constraint - ) - return config - - -DepthwiseConvolution3D = DepthwiseConv3D diff --git a/nobrainer/models/convnext.py b/nobrainer/models/convnext.py deleted file mode 100644 index b327670f..00000000 --- a/nobrainer/models/convnext.py +++ /dev/null @@ -1,196 +0,0 @@ -import numpy as np -import tensorflow as tf -from tensorflow.keras import layers - -from ..layers.DepthwiseConv3d import DepthwiseConv3D - - -def drop_path(inputs, drop_prob, is_training): - # https://github.com/rishigami/Swin-Transformer-TF/blob/main/swintransformer/model.py - if (not is_training) or (drop_prob == 0.0): - return inputs - - # Compute keep_prob - keep_prob = 1.0 - drop_prob - - # Compute drop_connect tensor - random_tensor = keep_prob - shape = (tf.shape(inputs)[0],) + (1,) * (len(tf.shape(inputs)) - 1) - random_tensor += tf.random.uniform(shape, dtype=inputs.dtype) - binary_tensor = tf.floor(random_tensor) - output = tf.math.divide(inputs, keep_prob) * binary_tensor - return output - - -class DropPath(tf.keras.layers.Layer): - # https://github.com/rishigami/Swin-Transformer-TF/blob/main/swintransformer/model.py - def __init__(self, drop_prob=None): - super().__init__() - self.drop_prob = drop_prob - - def call(self, x, training=None): - return drop_path(x, self.drop_prob, training) - - -class Block(layers.Layer): - """ConvNeXt Block. There are two equivalent implementations: - (1) DwConv -> LayerNorm (channels_first) - -> 1x1x1 Conv -> GELU -> 1x1x1 Conv; all in (N, C, H, W, D) - (2) DwConv -> Permute to (N, H, W, D, C); - LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back - We use (2) as we find it slightly faster in PyTorch - Args: - dim (int): Number of input channels. - drop_path (float): Stochastic depth rate. Default: 0.0 - layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. - """ - - def __init__(self, dim, drop_path=0.0, layer_scale_init_value=1e-6, prefix=""): - super().__init__() - self.dwconv = DepthwiseConv3D(kernel_size=7, padding="same") # depthwise conv - self.norm = layers.LayerNormalization(epsilon=1e-6) - # pointwise/1x1x1 convs, implemented with linear layers - self.pwconv1 = layers.Dense(4 * dim) - self.act = tf.keras.activations.gelu - self.pwconv2 = layers.Dense(dim) - self.drop_path = DropPath(drop_path) - self.dim = dim - self.layer_scale_init_value = layer_scale_init_value - self.prefix = prefix - - def build(self, input_shape): - self.gamma = tf.Variable( - initial_value=self.layer_scale_init_value * tf.ones((self.dim)), - trainable=True, - name=f"{self.prefix}/gamma", - ) - self.built = True - - def call(self, x): - input = x - x = self.dwconv(x) - # x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) - x = self.norm(x) - x = self.pwconv1(x) - x = self.act(x) - x = self.pwconv2(x) - if self.gamma is not None: - x = self.gamma * x - # x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) - - x = input + self.drop_path(x) - return x - - -class ConvNeXt(tf.keras.Model): - """3D ConvNeXt Classification Model. - - Adapted from 2D Tensorflow keras impl of : `A ConvNet for the 2020s` - - https://arxiv.org/pdf/2201.03545.pdf - Args: - num_classes (int): Number of classes for classification head. Default: 1 - depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] - dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] - include_top (bool): whether to add head or - just use it as feature extractor. Default: True - drop_path_rate (float): Stochastic depth rate. Default: 0. - layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. - head_init_scale (float): Init scaling value for - classifier weights and biases. Default: 1. - """ - - def __init__( - self, - num_classes=1, - depths=[3, 3, 9, 3], - dims=[96, 192, 384, 768], - include_top=True, - drop_path_rate=0.0, - layer_scale_init_value=1e-6, - head_init_scale=1.0, - ): - super().__init__() - self.include_top = include_top - self.downsample_layers = [] # stem and 3 intermediate downsampling conv layers - stem = tf.keras.Sequential( - [ - layers.Conv3D(dims[0], kernel_size=4, strides=4, padding="same"), - layers.LayerNormalization(epsilon=1e-6), - ] - ) - self.downsample_layers.append(stem) - for i in range(3): - downsample_layer = tf.keras.Sequential( - [ - layers.LayerNormalization(epsilon=1e-6), - layers.Conv3D( - dims[i + 1], kernel_size=2, strides=2, padding="same" - ), - ] - ) - self.downsample_layers.append(downsample_layer) - - self.stages = ( - [] - ) # 4 feature resolution stages, each consisting of multiple residual blocks - dp_rates = [x for x in np.linspace(0, drop_path_rate, sum(depths))] - cur = 0 - for i in range(4): - stage = tf.keras.Sequential( - [ - Block( - dim=dims[i], - drop_path=dp_rates[cur + j], - layer_scale_init_value=layer_scale_init_value, - prefix=f"block{i}", - ) - for j in range(depths[i]) - ] - ) - self.stages.append(stage) - cur += depths[i] - - if self.include_top: - self.avg = layers.GlobalAveragePooling3D() - self.norm = layers.LayerNormalization(epsilon=1e-6) # final norm layer - self.head = layers.Dense(num_classes) - else: - self.avg = None - self.norm = None - self.head = None - - def forward_features(self, x): - for i in range(4): - x = self.downsample_layers[i](x) - x = self.stages[i](x) - return x - - def call(self, x): - x = self.forward_features(x) - if self.include_top: - x = self.avg(x) - x = self.norm(x) - x = self.head(x) - return x - - -model_configs = dict( - convnext_tiny=dict(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768]), - convnext_small=dict(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768]), - convnext_base=dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024]), - convnext_large=dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536]), - convnext_xlarge=dict(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048]), -) - - -def create_model( - input_shape=(128, 128, 128, 1), - num_classes=1, - include_top=True, - model_name="convnext_tiny_1k", - **kwargs, -): - cfg = model_configs["_".join(model_name.split("_")[:2])] - net = ConvNeXt(num_classes, cfg["depths"], cfg["dims"], include_top, **kwargs) - net(tf.keras.Input(shape=input_shape)) - return net