-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththe-strahler-horton-number-on-random-trees.html
232 lines (216 loc) · 15.7 KB
/
the-strahler-horton-number-on-random-trees.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
<!DOCTYPE html>
<html lang="en">
<head>
<title>The Strahler-Horton number on random trees - You don't need to prove this</title>
<link href="https://newptcai.github.io/feeds/all.atom.xml" type="application/atom+xml" rel="alternate" title="You don't need to prove this Full Atom Feed" />
<!-- CSS -->
<link rel="stylesheet" type="text/css" href="https://newptcai.github.io/theme/css/w3.css">
<link rel="stylesheet" type="text/css" href="https://newptcai.github.io/theme/css/style.css">
<link rel="stylesheet" type="text/css" href="https://newptcai.github.io/theme/css/jqcloud.css">
<link rel="stylesheet" type="text/css" href="https://newptcai.github.io/theme/css/all.min.css">
<link rel="stylesheet" type="text/css" href="https://newptcai.github.io/theme/css/shariff.min.css">
<link rel="stylesheet" type="text/css" href="https://newptcai.github.io/theme/css/pygments-highlight-github.css">
<!-- JavaScript -->
<script src="https://newptcai.github.io/theme/js/jquery-3.5.1.min.js"></script>
<script src="https://newptcai.github.io/theme/js/jqcloud.min.js"></script>
<!-- Meta -->
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<meta name="HandheldFriendly" content="True" />
<meta name="author" content="Xing Shi Cai" />
<meta name="description" content="We list some open problems regarding the Strahler-Horton number on random trees \(T_n\). if (!document.getElementById('mathjaxscript_pelican_#%@#$@#')) { var align = "center", indent = "0em", linebreak = "false"; if (false) { align = (screen.width" />
<meta name="keywords" content="probability, random-trees, combinatorics, open-problem">
<!-- Facebook OpenGraph -->
<meta property="og:site_name" content="You don't need to prove this">
<meta property="og:title" content="The Strahler-Horton number on random trees - You don't need to prove this" />
<meta property="og:description" content="We list some open problems regarding the Strahler-Horton number on random trees \(T_n\). if (!document.getElementById('mathjaxscript_pelican_#%@#$@#')) { var align = "center", indent = "0em", linebreak = "false"; if (false) { align = (screen.width" />
<meta property="og:image" content="https://newptcai.github.io">
<meta property="og:type" content="article" />
<meta property="og:url" content="https://newptcai.github.io/the-strahler-horton-number-on-random-trees.html" />
<meta property="og:locale" content="de_DE" />
<meta property="og:locale:alternate" content="en_US" />
<!-- Twitter -->
<meta name="twitter:card" content="summary_large_image">
<meta name="twitter:title" content="The Strahler-Horton number on random trees - You don't need to prove this">
<meta name="twitter:description" content="We list some open problems regarding the Strahler-Horton number on random trees \(T_n\). if (!document.getElementById('mathjaxscript_pelican_#%@#$@#')) { var align = "center", indent = "0em", linebreak = "false"; if (false) { align = (screen.width">
<meta name="twitter:image" content="https://newptcai.github.io">
</head>
<body>
<div class="w3-row w3-card w3-white">
<header id=banner>
<!-- AUTHOR INITIALS-->
<a href="https://newptcai.github.io" id=logo title="Home">XS</a>
<nav id="menu">
<ul>
<li><a href="https://newptcai.github.io/pages/research.html">Research</a></li>
<li><a href="https://newptcai.github.io/pages/teaching.html">Teaching</a></li>
<li class="active"><a href="https://newptcai.github.io/category/math.html">math</a></li>
<li ><a href="https://newptcai.github.io/category/mumble.html">mumble</a></li>
<li ><a href="https://newptcai.github.io/category/photo.html">photo</a></li>
</ul>
</nav>
</header>
</div>
<br>
<article>
<header class="w3-container col-main">
<h1>The Strahler-Horton number on random trees</h1>
<div class="post-info">
<div class="w3-opacity w3-margin-right w3-margin-bottom" style="flex-grow: 1;">
<span> Posted on Mon 17 December 2018 in <a href="https://newptcai.github.io/category/math.html" style="font-style: italic">math</a>
</span>
</div>
<div id="article-tags">
<span class="w3-tag w3-light-grey w3-text-red w3-hover-red">
<a href="https://newptcai.github.io/tag/probability.html" title=" All posts about Probability
">#probability</a>
</span>
<span class="w3-tag w3-light-grey w3-text-red w3-hover-red">
<a href="https://newptcai.github.io/tag/random-trees.html" title=" All posts about Random-Trees
">#random-trees</a>
</span>
<span class="w3-tag w3-light-grey w3-text-red w3-hover-red">
<a href="https://newptcai.github.io/tag/combinatorics.html" title=" All posts about Combinatorics
">#combinatorics</a>
</span>
<span class="w3-tag w3-light-grey w3-text-red w3-hover-red">
<a href="https://newptcai.github.io/tag/open-problem.html" title=" All posts about Open-Problem
">#open-problem</a>
</span>
</div>
</div>
</header>
<br>
<div class="col-main w3-container">
<main id="article-content">
<p>We list some open problems regarding the Strahler-Horton number on random trees <span class="math">\(T_n\)</span>.</p>
<h1 id="the-definition">The definition</h1>
<p><img alt="Horton Number -- from Wikipedia" src="https://upload.wikimedia.org/wikipedia/commons/thumb/e/e6/Flussordnung_%28Strahler%29.svg/1000px-Flussordnung_%28Strahler%29.svg.png"></p>
<p>One may assign a Strahler number to all nodes of a tree, in bottom-up order, as follows:</p>
<ul>
<li><p>If the node is a leaf (has no children), its Strahler number is one.</p></li>
<li><p>If the node has one child with Strahler number i, and all other children have Strahler numbers less than i, then the Strahler number of the node is i again.</p></li>
<li><p>If the node has two or more children with Strahler number i, and no children with greater number, then the Strahler number of the node is <span class="math inline">\(i + 1\)</span>.</p></li>
</ul>
<p>Horton-Strahler number is a relatively popular topic. See recent papers <a href="https://scholar.google.ca/scholar?as_ylo=2014&q=Horton-Strahler+number&hl=en&as_sdt=0,5">here</a>.</p>
<h1 id="what-is-known">What is known</h1>
<h2 id="conditional-galton-watson-trees">Conditional Galton-Watson trees</h2>
<h3 id="uniform-binary-tree">Uniform binary tree</h3>
<p><span class="citation">Luc Devroye and Kruszewski (<a href="#ref-devroye1995">1995</a>)</span> has shown that for a uniform random binary tree of <span class="math inline">\(n\)</span> nodes, its Horton-Strahler number <span class="math inline">\(S_n\)</span> satisfies <span class="math display">\[\mathbb{E}\left(S_n\right)=\log_4(n)+O(1), \qquad
\mathbb{P}\left(\left| S_n-\log_4(n)\right| \geq x\right)\leq \frac{D}{4^x}\]</span> for some constant <span class="math inline">\(D>0\)</span>.</p>
<p>The <span class="math inline">\(O(1)\)</span> term has been studied in great details by Flajolet <span class="citation">(Prodinger <a href="#ref-prodinger2012">2012</a>)</span> using generating function.</p>
<h3 id="t-ary-trees">t-ary trees</h3>
<p><span class="citation">Drmota and Prodinger (<a href="#ref-drmota2006">2006</a>)</span> studied the Horton-Strahler number of uniform random trees <span class="math inline">\(T_n\)</span> with degrees in a finite set.</p>
<p>They definition of Strahler-Horton Number is slightly different. Let <span class="math inline">\(c_1\geq c_2\geq \text{...}\geq c_t\)</span> be the Horton number of subtrees of node u, then Horton number of the subtree u is defined by <span class="math display">\[S(u)=\max \left(c_1,c_2+1,\ldots ,c_t+t-1\right)\]</span> (When <span class="math inline">\(t\leq 2\)</span>, this reduces to original Horton number definition). Their result shows that the Horton number of <span class="math inline">\(S_n=S(T)\)</span> has that <span class="math display">\[\mathbb{E}\left(S_n\right)=\log_4(n)+O(1), \qquad \mathbb{P}\left(\left| S_n-\log_4(n)\right| \geq x\right)\leq O\left(2^{-y}\right)\]</span> uniformly for <span class="math inline">\(0\leq y\leq \left(\frac{1}{2}-\epsilon \right) \log_4(n)\)</span>. This somewhat surprising result basically says that <span class="math inline">\(S_n\)</span> is always <span class="math inline">\(\log_4(n)\)</span> <em>regardless of the offspring</em> distribution. The proof uses generating functions.</p>
<h1 id="split-trees-binary-search-trees">Split trees (Binary Search Trees)</h1>
<p><span class="citation">L. Devroye and Kruszewski (<a href="#ref-devroye1996">1996</a>)</span> showed that for binary tries, i.e., binary split trees with split vector <span class="math inline">\(\left(V_1,1-V_1\right)\)</span> and <span class="math inline">\(V_1\)</span> has Bernoulli <span class="math inline">\(p\)</span> distribution, we have <span class="math display">\[\frac{S_n}{\log (n)}\overset{p}{\to }\frac{1}{\log \left(\frac{1}{\min (p,1-p)}\right)}\]</span> The proof uses and upper bound called Balance number and a lower bound called Fill level, which converges to the same limit in this case.</p>
<p>For binary search trees, the upper bound Balance number is used to show that <span class="math display">\[\frac{S_n}{n \log }\leq \frac{1}{\log (3)}\]</span> with high probability <span class="citation">(Kruszewski <a href="#ref-kruszewski1999">1999</a>)</span>. This is conjectured as the right scale. Though the lower bound given by Fill level is far away from the upper bound.</p>
<h1 id="whats-more-can-be-done">What’s more can be done?</h1>
<ul>
<li><p>Can we get a probabilistic proof for the universal <span class="math inline">\(\log_4(n)\)</span> for Galton-Watson trees?</p></li>
<li><p>Can we find the lower bound for the binary search trees?</p></li>
<li><p>Can there be a general result on split trees?</p></li>
<li><p>What is the Horton Number for RRT or Preferential Attachment?</p></li>
</ul>
<h1 id="references" class="unnumbered">References</h1>
<div id="refs" class="references">
<div id="ref-devroye1996">
<p>Devroye, L., and P. Kruszewski. 1996. “On the Horton-Strahler Number for Random Tries.” <em>RAIRO Informatique Théorique et Applications. Theoretical Informatics and Applications</em> 30 (5): 443–56. doi:<a href="https://doi.org/10.1051/ita/1996300504431">10.1051/ita/1996300504431</a>.</p>
</div>
<div id="ref-devroye1995">
<p>Devroye, Luc, and Paul Kruszewski. 1995. “A Note on the Horton-Strahler Number for Random Trees.” <em>Information Processing Letters</em> 56 (2): 95–99. doi:<a href="https://doi.org/10.1016/0020-0190(95)00114-R">10.1016/0020-0190(95)00114-R</a>.</p>
</div>
<div id="ref-drmota2006">
<p>Drmota, Michael, and Helmut Prodinger. 2006. “The Register Function for T-Ary Trees.” <em>ACM Transactions on Algorithms</em> 2 (3): 318–34. doi:<a href="https://doi.org/10.1145/1159892.1159894">10.1145/1159892.1159894</a>.</p>
</div>
<div id="ref-kruszewski1999">
<p>Kruszewski, Paul. 1999. “A Note on the Horton-Strahler Number for Random Binary Search Trees.” <em>Information Processing Letters</em> 69 (1): 47–51. doi:<a href="https://doi.org/10.1016/S0020-0190(98)00192-6">10.1016/S0020-0190(98)00192-6</a>.</p>
</div>
<div id="ref-prodinger2012">
<p>Prodinger, Helmut. 2012. “Introduction to Philippe Flajolet’s Work on the Register Function and Related Topics.” <a href="http://math.sun.ac.za/~hproding/pdffiles/flajolet-introduction-register.pdf" class="uri">http://math.sun.ac.za/~hproding/pdffiles/flajolet-introduction-register.pdf</a>.</p>
</div>
</div>
<script type="text/javascript">if (!document.getElementById('mathjaxscript_pelican_#%@#$@#')) {
var align = "center",
indent = "0em",
linebreak = "false";
if (false) {
align = (screen.width < 768) ? "left" : align;
indent = (screen.width < 768) ? "0em" : indent;
linebreak = (screen.width < 768) ? 'true' : linebreak;
}
var mathjaxscript = document.createElement('script');
mathjaxscript.id = 'mathjaxscript_pelican_#%@#$@#';
mathjaxscript.type = 'text/javascript';
mathjaxscript.src = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.3/latest.js?config=TeX-AMS-MML_HTMLorMML';
var configscript = document.createElement('script');
configscript.type = 'text/x-mathjax-config';
configscript[(window.opera ? "innerHTML" : "text")] =
"MathJax.Hub.Config({" +
" config: ['MMLorHTML.js']," +
" TeX: { extensions: ['AMSmath.js','AMSsymbols.js','noErrors.js','noUndefined.js'], equationNumbers: { autoNumber: 'none' } }," +
" jax: ['input/TeX','input/MathML','output/HTML-CSS']," +
" extensions: ['tex2jax.js','mml2jax.js','MathMenu.js','MathZoom.js']," +
" displayAlign: '"+ align +"'," +
" displayIndent: '"+ indent +"'," +
" showMathMenu: true," +
" messageStyle: 'normal'," +
" tex2jax: { " +
" inlineMath: [ ['\\\\(','\\\\)'] ], " +
" displayMath: [ ['$$','$$'] ]," +
" processEscapes: true," +
" preview: 'TeX'," +
" }, " +
" 'HTML-CSS': { " +
" availableFonts: ['STIX', 'TeX']," +
" preferredFont: 'STIX'," +
" styles: { '.MathJax_Display, .MathJax .mo, .MathJax .mi, .MathJax .mn': {color: 'inherit ! important'} }," +
" linebreaks: { automatic: "+ linebreak +", width: '90% container' }," +
" }, " +
"}); " +
"if ('default' !== 'default') {" +
"MathJax.Hub.Register.StartupHook('HTML-CSS Jax Ready',function () {" +
"var VARIANT = MathJax.OutputJax['HTML-CSS'].FONTDATA.VARIANT;" +
"VARIANT['normal'].fonts.unshift('MathJax_default');" +
"VARIANT['bold'].fonts.unshift('MathJax_default-bold');" +
"VARIANT['italic'].fonts.unshift('MathJax_default-italic');" +
"VARIANT['-tex-mathit'].fonts.unshift('MathJax_default-italic');" +
"});" +
"MathJax.Hub.Register.StartupHook('SVG Jax Ready',function () {" +
"var VARIANT = MathJax.OutputJax.SVG.FONTDATA.VARIANT;" +
"VARIANT['normal'].fonts.unshift('MathJax_default');" +
"VARIANT['bold'].fonts.unshift('MathJax_default-bold');" +
"VARIANT['italic'].fonts.unshift('MathJax_default-italic');" +
"VARIANT['-tex-mathit'].fonts.unshift('MathJax_default-italic');" +
"});" +
"}";
(document.body || document.getElementsByTagName('head')[0]).appendChild(configscript);
(document.body || document.getElementsByTagName('head')[0]).appendChild(mathjaxscript);
}
</script>
</main>
<br>
<footer>
<div class="adjust-width">
<div id="author-block" class="w3-light-grey w3-border">
<img style="width: 35px; height: 56px; margin-left:50px;" src="https://newptcai.github.io/theme/images/bookmark-red.png" alt="bookmark"></img>
<div id="author-info">
<a href="https://newptcai.github.io/authors.html#xing-shi-cai"><img
style="width: 60px; height: 60px;" src="https://newptcai.github.io/authors/xing-shi-cai.png" onerror="this.src='https://newptcai.github.io/theme/images/avatar.png'"></img>
</a>
<div style="margin-left: 20px; margin-top: 15px;">
<a href="https://newptcai.github.io/authors.html#xing-shi-cai"><span id="author-name" class="w3-hover-text-dark-grey">Xing Shi Cai</span></a>
<p id="author-story" style="max-width: 500px;"></p>
</div>
</div>
</div>
</div>
<br>
</footer>
</div>
</article>
<br>
<script src="https://newptcai.github.io/theme/js/shariff.min.js"></script>
</body>
</html>