forked from kathrinawu/AniPortraitGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_video.py
287 lines (252 loc) · 14 KB
/
gen_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
"""Generate videos given pose key frams"""
import os
import sys
sys.path.append('./FaceRecon')
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from tqdm import tqdm
import imageio
from easydict import EasyDict as edict
import cv2
import curriculums
import generators
from samplers.joint_sampler import IDShapeSampler, CameraJointSampler, ExpressionSampler
from samplers.utils import transform_from_euler_to_orgin, z_sampler
device = torch.device('cuda')
def convert_depth(depth_image):
near = 1.7550879793728869
far = 2.115087979372887
depth_image = 1.0 - (depth_image - near) / (far - near)
depth_image = (depth_image.permute(0, 2, 3, 1) * 255).clamp(0, 255).to(torch.uint8)
return depth_image
def parse_seeds(seeds):
seeds_str = seeds.strip().split(',')
seeds_str = filter(lambda x: x != '', seeds_str)
seeds = []
for s in seeds_str:
if '-' in s:
seeds += list(np.arange(int(s.split('-')[0]), int(s.split('-')[1])))
else:
seeds.append(int(s))
return seeds
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--ckpt', type=str, default='./ckpts/sshq512.pt')
parser.add_argument('--output_dir', type=str, default='./video')
parser.add_argument('--curriculum', type=str, default='SSHQ512_inf')
# body render options
parser.add_argument('--face_radius', help='the near plane of sample space of face region', type=float, default=0.52767998683149)
parser.add_argument('--face_ty', help='the offset along y axis of face camera', type=float, default=0.067489409707008)
parser.add_argument('--face_tz', help='the offset along z axis of face camera', type=float, default=0.050608165033568)
parser.add_argument('--body_ray_start', help='the offset along y axis of face camera', type=float, default=1.675087979372887)
parser.add_argument('--body_ray_end', help='the offset along y axis of face camera', type=float, default=2.115087979372887)
# multi options
parser.add_argument('--seeds', type=str, default='42,', help='random seeds (either range str or npy path)')
parser.add_argument('--seeds_interval', type=int, default=100, help='interval between seeds')
parser.add_argument('--workers', type=int, default=1, help='total number of workers')
parser.add_argument('--rank', type=int, default=0, help='rank')
# video gen options
parser.add_argument('--psi', type=float, default=0.7, help='truncation psi')
parser.add_argument('--exp_path', type=str, default='null', help='path to expression sequence') # [N, 64]
parser.add_argument('--pose_path', type=str, default='null', help='path to pose sequence') # [N, 6, 3]
parser.add_argument('--cam_path', type=str, default='null', help='path to camera sequence') # [N, 2]
parser.add_argument('--n_interval', type=int, default=30, help='Number of interpolation frames between two keyframes')
parser.add_argument('--cam_yaw_range', type=float, default=0.0, help='camera yaw range')
parser.add_argument('--cam_cycle', type=int, default=2, help='camera movement cycle (s)')
parser.add_argument('--video_length', type=int, default=0, help='video length (s), 0 for auto')
parser.add_argument('--fps', type=float, default=30, help='fps')
parser.add_argument('--ext', type=str, default='mp4', help='video extension')
parser.add_argument('--random_instance', action='store_true', help='random instance')
parser.add_argument('--random_pose', type=str, default='null', help='random pose')
opt = parser.parse_args()
# Body render options
origin_offset_body = np.array([0, 0.052552, 0])
offset_face = np.array([0, opt.face_ty, opt.face_tz])
origin_offset_body = origin_offset_body - offset_face
origin_offset_body = origin_offset_body / opt.face_radius
body_raidus = 1.0 / opt.face_radius
origin_offset_body[1] += 0.01
rendering_options = {
'ray_start': opt.body_ray_start, # near point along each ray to start taking samples.
'ray_end': opt.body_ray_end, # far point along each ray to stop taking samples.
'radius': body_raidus, # radius of the sphere to render.
'fov': 12,
'origin_offset': origin_offset_body,
}
# Setup models
curriculum = getattr(curriculums, opt.curriculum)
generator = generators.ManifoldSRGenerator3d(**curriculum['generator']['kwargs'])
print("Generator ckpt:", opt.ckpt)
generator.load_state_dict(torch.load(opt.ckpt, map_location=device), strict=True)
generator = generator.to(device)
generator.eval()
joint_sampler = CameraJointSampler(edict(camera_pose_joint_sample=np.load('./sampler_npy/camera_pose_joint_sample.npy')))
shape_sampler = IDShapeSampler(
edict(id_sample=np.load('./sampler_npy/id_face_sampler.npy')),
edict(id_shape_sample=np.load('./sampler_npy/id_shape_sampler_body.npy'))
)
exp_sampler = ExpressionSampler(
edict(expression_sample=np.load('./sampler_npy/expression_face.npy')),
edict(expression_sample=np.load('./sampler_npy/expression_body.npy'))
)
# Setup the frames
if opt.video_length == 0:
keyframe_file = []
if opt.exp_path != 'null': keyframe_file.append(opt.exp_path)
if opt.pose_path != 'null': keyframe_file.append(opt.pose_path)
if opt.cam_path != 'null': keyframe_file.append(opt.cam_path)
assert len(keyframe_file) > 0, \
"video_length must be set if all of exp_path, pose_path and cam_path are null"
keyframes = np.load(keyframe_file[0]).shape[0]
n_interval = opt.n_interval
frames = keyframes * n_interval
opt.video_length = frames / opt.fps
cam_cycles = opt.video_length // opt.cam_cycle
else:
assert opt.video_length % opt.cam_cycle == 0, "video_length must be divisible by cam_cycle"
frames = int(opt.fps * opt.video_length)
keyframes = frames // opt.n_interval
frames_per_cam_cycle = int(opt.fps * opt.cam_cycle)
cam_cycles = opt.video_length // opt.cam_cycle
n_interval = opt.n_interval
## camera
h_mean = np.pi * 0.5
v_mean = np.pi * 0.5
if opt.cam_path == 'null':
if opt.cam_yaw_range != 0:
yaws = list(np.linspace(-opt.cam_yaw_range, opt.cam_yaw_range, frames_per_cam_cycle // 2 + 1)[:-1]) \
+ list(np.linspace(opt.cam_yaw_range, -opt.cam_yaw_range, frames_per_cam_cycle // 2 + 1)[:-1])
yaws = yaws * cam_cycles
else:
yaws = [0] * frames
pitches = [0] * frames
camera_angles = [[a + h_mean, b + v_mean] for a, b in zip(yaws, pitches)]
elif opt.cam_path == 'rand':
camera_angles = [[np.random.uniform(-np.pi, np.pi), np.random.uniform(-np.pi, np.pi)] for _ in range(frames)]
else:
camera_angles_np = np.load(opt.cam_path)
camera_angles_np = camera_angles_np[:frames]
camera_angles_np = np.concatenate([camera_angles_np, camera_angles_np[:1]], axis=0)
camera_angles = []
for i in range(keyframes):
for j in range(n_interval):
k = j / n_interval
yaw = (1 - k) * camera_angles_np[i][1] + k * camera_angles_np[i + 1][1]
pitch = (1 - k) * camera_angles_np[i][0] + k * camera_angles_np[i + 1][0]
camera_angles.append([yaw, pitch])
## expression
if opt.exp_path == 'null' or opt.exp_path == 'rand':
z_exps_np = np.zeros((keyframes, 64))
else:
z_exps_np = np.load(opt.exp_path)
z_exps_np = z_exps_np[:keyframes]
z_exps_np = np.concatenate([z_exps_np, z_exps_np[:1]], axis=0)
z_exps = []
for i in range(keyframes):
for j in range(n_interval):
k = j / n_interval
z_exps.append(torch.tensor(
(1 - k) * z_exps_np[i] + k * z_exps_np[i + 1],
).float().to(device).unsqueeze(0))
## pose
if opt.pose_path == 'null' or opt.pose_path == 'rand':
z_poses_np = np.zeros((keyframes, 6, 3))
else:
z_poses_np = np.load(opt.pose_path)
z_poses_np = z_poses_np[:keyframes]
z_poses_np = np.concatenate([z_poses_np, z_poses_np[:1]], axis=0)
z_poses = []
for i in range(keyframes):
for j in range(n_interval):
k = j / n_interval
z_poses.append(torch.tensor(
(1 - k) * z_poses_np[i] + k * z_poses_np[i + 1],
).float().to(device).unsqueeze(0))
# final misc
output_dir = opt.output_dir
os.makedirs(output_dir, exist_ok=True)
psi = opt.psi
if opt.seeds.endswith('.npy'):
seeds = list(np.load(opt.seeds))
elif ',' in opt.seeds or '-' in opt.seeds:
seeds = parse_seeds(opt.seeds)
else:
seeds = list(np.arange(int(opt.seeds), int(opt.seeds) + opt.seeds_interval))
if opt.workers > 1:
seeds = seeds[len(seeds) * opt.rank // opt.workers: len(seeds) * (opt.rank + 1) // opt.workers]
generator.generate_avg_frequencies(shape_sampler, device)
# Video generation
print("Generating video...")
with torch.no_grad():
with tqdm(total=len(seeds), desc='Total Progress', position=0, leave=True) as pbar_seeds:
for seed in seeds:
torch.manual_seed(seed)
z_id, z_shape = shape_sampler.forward_body(1, device)
z_noise = z_sampler((1, 80), device=device, dist='gaussian')
z = torch.cat([z_id, z_noise], dim=1)
if opt.random_instance:
if opt.pose_path == 'rand' or opt.cam_path == 'rand':
camera_pose, z_pose_ = joint_sampler.forward(1, device)
if opt.cam_path == 'rand':
camera_angles = [[camera_pose[0, 1], camera_pose[0, 0]]] * frames
if opt.pose_path == 'rand':
z_pose = z_pose_ * 0.5
z_poses = [z_pose] * frames
if opt.random_pose == 'head':
for z_pose in z_poses:
z_pose[:, [0, 3]] = z_pose_[:, [0, 3]]
if opt.random_pose == 'shoulder':
for z_pose in z_poses:
z_pose[:, [1, 2, 4, 5]] = z_pose_[:, [1, 2, 4, 5]]
if opt.exp_path == 'rand':
z_exp = exp_sampler.forward_body(1, device)
z_exps = [z_exp] * frames
# sr and cache manifold
raw_freq, raw_phase = generator.radiance_net.mapping_network(z)
trunc_freq = generator.avg_frequencies * (1 - psi) + raw_freq * psi
trunc_phase = generator.avg_phase_shifts * (1 - psi) + raw_phase * psi
sr_output = generator.manifold_sr([z_id, None, z_noise], trunc_freq, trunc_phase, truncation_psi=psi)
imgs_rgb = []
imgs_rgb_lr = []
imgs_depth = []
with tqdm(total=frames, desc=f'Seed {seed}', position=1, leave=False) as pbar_frames:
for (yaw, pitch), z_exp, z_pose in zip(camera_angles, z_exps, z_poses):
camera_pose = torch.tensor([[pitch, yaw]]).to(device)
if not opt.random_instance:
if opt.pose_path == 'rand' or opt.cam_path == 'rand':
camera_pose_, z_pose_ = joint_sampler.forward(1, device)
if opt.cam_path == 'rand':
camera_pose = camera_pose_
if opt.pose_path == 'rand':
z_pose = z_pose_ * 0.7
if opt.exp_path == 'rand':
z_exp = exp_sampler.forward_body(1, device)
camera_origin = transform_from_euler_to_orgin(device, camera_pose[:, :1], camera_pose[:, 1:], 1, r=rendering_options['radius'])
res = generator.synthesis([z_id, z_exp, z_noise], z_shape, camera_origin, z_pose, \
sr_output=sr_output, rendering_options=rendering_options)
image = res['gen_img']
image = (image.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
image_lr = res['gen_img_lr']
image_lr = (image_lr.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
depth = convert_depth(res['depth_image'])
imgs_rgb.append(image[0, ...].cpu().numpy())
imgs_rgb_lr.append(image_lr[0, ...].cpu().numpy())
imgs_depth.append(cv2.cvtColor(cv2.applyColorMap(depth[0, ...,0].cpu().numpy(), cv2.COLORMAP_INFERNO), cv2.COLOR_BGR2RGB))
pbar_frames.update(1)
if opt.ext == 'gif':
imageio.mimsave(os.path.join(output_dir, f'video_{seed}_rgb.gif'), imgs_rgb, fps=opt.fps)
imageio.mimsave(os.path.join(output_dir, f'video_{seed}_rgb_lr.gif'), imgs_rgb_lr, fps=opt.fps)
imageio.mimsave(os.path.join(output_dir, f'video_{seed}_depth.gif'), imgs_depth, fps=opt.fps)
elif opt.ext == 'mp4':
imageio.mimwrite(os.path.join(output_dir, f'video_{seed}_rgb.mp4'), imgs_rgb, fps=opt.fps, quality=8)
imageio.mimwrite(os.path.join(output_dir, f'video_{seed}_rgb_lr.mp4'), imgs_rgb_lr, fps=opt.fps, quality=8)
imageio.mimwrite(os.path.join(output_dir, f'video_{seed}_depth.mp4'), imgs_depth, fps=opt.fps, quality=8)
elif opt.ext == 'png':
for i in range(len(imgs_rgb)):
imageio.imwrite(os.path.join(output_dir, f'video_{seed}_rgb_{i:03d}.png'), imgs_rgb[i])
imageio.imwrite(os.path.join(output_dir, f'video_{seed}_rgb_lr_{i:03d}.png'), imgs_rgb_lr[i])
imageio.imwrite(os.path.join(output_dir, f'video_{seed}_depth_{i:03d}.png'), imgs_depth[i])
pbar_seeds.update(1)