-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchoosedice.py
537 lines (476 loc) · 22.1 KB
/
choosedice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
from tkinter import *
import math
# Represents a line between two nodes
class Line:
def __init__(self, canvas, x1, y1, x2, y2):
# the canvas on which the line is drawn
self.canvas = canvas
# the tkinter ID for the line itself
self.lineId = canvas.create_line(x1, y1, x2, y2)
# the coordinates representing the arrows on the line
arrowCoords = self.__genArrowCoords(x1, y1, x2, y2)
# the tkinter ID for the first arrow line
self.arrowId1 = canvas.create_line(*arrowCoords[0])
# the tkinter ID for the second arrow line
self.arrowId2 = canvas.create_line(*arrowCoords[1])
# sets the coordinates for the line
def setCoords(self, x1, y1, x2, y2):
# sets the coordinates of the line in tkinter
self.canvas.coords(self.lineId, x1, y1, x2, y2)
# sets the coordinates for the smaller arrow lines in tkinter
arrowCoords = self.__genArrowCoords(x1, y1, x2, y2)
self.canvas.coords(self.arrowId1, *arrowCoords[0])
self.canvas.coords(self.arrowId2, *arrowCoords[1])
# removes the line from tkinter
def remove(self):
for id in [self.lineId, self.arrowId1, self.arrowId2]:
self.canvas.delete(id)
# updates the direction
def update(self, direction, x1, y1, x2, y2):
lineCoords = self.canvas.coords(self.lineId)
lineCoords[direction * 2] = (x1 + x2) / 2.0
lineCoords[direction * 2 + 1] = (y1 + y2) / 2.0
self.setCoords(*lineCoords)
# generates the coordinates for an arrow given a line start and end point
@staticmethod
def __genArrowCoords(x1, y1, x2, y2):
midx = (x1 + x2) / 2.0
midy = (y1 + y2) / 2.0
vectx = x2 - x1
vecty = y2 - y1
length = math.sqrt(vectx * vectx + vecty * vecty)
if length != 0:
vectx = vectx * Node.arrowLength / length
vecty = vecty * Node.arrowLength / length
perpx = -vecty
perpy = vectx
coords1 = [midx, midy, midx + perpx - vectx, midy + perpy - vecty]
coords2 = [midx, midy, midx - perpx - vectx, midy - perpy - vecty]
else:
coords1 = [midx, midy, midx, midy]
coords2 = [midx, midy, midx, midy]
return coords1, coords2
#Represents a node in the graph to be searched, or a location on the board
class Node:
#the halfWidth of the Node when drawn on the canvas
halfWidth = 10
arrowLength = 5
def __init__(self, canvas, creator, x, y):
#the canvas id for the Node
self.itemId = canvas.create_rectangle(x - Node.halfWidth,
y - Node.halfWidth,
x + Node.halfWidth,
y + Node.halfWidth,
fill='blue',
activefill='purple')
#the canvas on which the Node is drawn
self.canvas = canvas
#the parent object of the Node
self.creator = creator
self.canvas.tag_bind(self.itemId, '<ButtonPress-1>', self.__startMove)
self.canvas.tag_bind(self.itemId, '<B1-Motion>', self.__continueMove)
self.canvas.tag_bind(self.itemId, '<ButtonRelease-1>', self.__endMove)
secondaryButtons = ['2', '3']
for but in secondaryButtons:
self.canvas.tag_bind(self.itemId, '<ButtonPress-'+but+'>', self.__startConnect)
self.canvas.tag_bind(self.itemId, '<B'+but+'-Motion>', self.__continueConnect)
self.canvas.tag_bind(self.itemId, '<ButtonRelease-'+but+'>', self.__endConnect)
#the line originating from the Node currently being drawn
self.curLine = None
#the adjacent Nodes to the Node
self.neighbors = {}
#the parent Nodes adjacent to this Node
self.parents = {}
#accumulates the expected number of goal Nodes that will be landed on
self.expected = None
#holds the current best dice to choose at this Node
self.dice = None
#the best choices to make for each number rolled
self.bestRollChoices = None
#whether the Node is a goal
self.isGoal = False
#called when left mouse is pressed down on Node
def __startMove(self, event):
if (self.creator.clickFlag == 'none'):
coords = self.canvas.coords(self.itemId)
self.__coords = (coords[0] - event.x,
coords[1] - event.y,
coords[2] - event.x,
coords[3] - event.y)
#called when mouse is dragged after having been left-pressed on Node
def __continueMove(self, event):
if (self.creator.clickFlag == 'none'):
x1 = self.__coords[0] + event.x
y1 = self.__coords[1] + event.y
x2 = self.__coords[2] + event.x
y2 = self.__coords[3] + event.y
self.canvas.coords(self.itemId, x1, y1, x2, y2)
for (neighbor, (line, direction)) in self.neighbors.items():
line.update(direction, x1, y1, x2, y2)
for (neighbor, (line, direction)) in self.parents.items():
line.update(direction, x1, y1, x2, y2)
#called when mouse is released after having been left-pressed on Node
def __endMove(self, event):
if self.creator.clickFlag == 'setOrigin':
self.creator.setOrigin(self)
elif self.creator.clickFlag == 'setGoal':
self.creator.setGoal(self)
else:
self.__continueMove(event)
#called when right mouse is pressed down on Node
def __startConnect(self, event):
coords = self.canvas.coords(self.itemId)
startx = (coords[0]+coords[2])/2.0
starty = (coords[1]+coords[3])/2.0
self.curLine = Line(self.canvas, startx, starty, event.x, event.y)
#called when mouse is dragged after having been right pressed on Node
def __continueConnect(self, event):
coords = self.canvas.coords(self.itemId)
startx = (coords[0]+coords[2])/2.0
starty = (coords[1]+coords[3])/2.0
self.curLine.setCoords(startx, starty, event.x, event.y)
#called when mouse is released after having been right pressed on Node
def __endConnect(self, event):
othNode = self.creator.getNodeAt(event.x, event.y, self)
if othNode:
if othNode == self:
self.curLine.remove()
for neighbor, (line, dir) in self.neighbors.items():
line.remove()
del neighbor.parents[self]
for parent, (line, dir) in self.parents.items():
line.remove()
del parent.neighbors[self]
self.creator.destroyNode(self)
elif othNode in self.neighbors or othNode in self.parents:
self.curLine.remove()
val = othNode.parents.get(self)
if val:
line, _ = val
line.remove()
del othNode.parents[self]
del self.neighbors[othNode]
val = othNode.neighbors.get(self)
if val:
line, _ = val
line.remove()
del othNode.neighbors[self]
del self.parents[othNode]
else:
coords = self.canvas.coords(self.itemId)
othCoords = self.canvas.coords(othNode.itemId)
startx = (coords[0] + coords[2]) / 2.0
starty = (coords[1] + coords[3]) / 2.0
endx = (othCoords[0] + othCoords[2]) / 2.0
endy = (othCoords[1] + othCoords[3]) / 2.0
self.curLine.setCoords(startx, starty, endx, endy)
self.neighbors[othNode] = (self.curLine, 0)
othNode.parents[self] = (self.curLine, 1)
else:
self.curLine.remove()
self.curLine = None
#allows the user to create a graph that represents a level
class LevelCreator:
def __init__(self, master):
#the width of the level creation canvas
self.width = 800
#the height of the level creation canvas
self.height = 400
#the level creation canvas
self.canvas = Canvas(master, width=self.width, height=self.height)
self.canvas.grid(row=0, column=0, columnspan=10)
#the canvas id of the background rectangle
self.backgroundId = self.canvas.create_rectangle(0, 0, self.width, self.height, fill='white')
self.canvas.tag_bind(self.backgroundId, '<ButtonPress-1>', self.__createNode)
#a map of node canvas IDs to the Node objects
self.nodeMap = {}
#the origin Node
self.origin = None
#contains modifiers for the behavior of the next click
self.clickFlag = 'none'
#creates a Node from a mouse click event
def __createNode(self, event):
node = Node(self.canvas, self, event.x, event.y)
self.nodeMap[node.itemId] = node
#destroys a Node
def destroyNode(self, node):
if node == self.origin:
self.origin = None
self.canvas.delete(node.itemId)
del self.nodeMap[node.itemId]
#get Node at the given position
def getNodeAt(self, x, y, fromNode):
items = self.canvas.find_overlapping(x, y, x, y)
safetyNode = None
for item in items:
othNode = self.nodeMap.get(item)
if othNode:
safetyNode = othNode
if not ((fromNode in othNode.neighbors) or (othNode in fromNode.neighbors)):
return othNode
return safetyNode
#sets the origin Node
def setOrigin(self, origin):
if self.origin:
self.canvas.itemconfig(self.origin.itemId, fill='blue')
self.canvas.itemconfig(origin.itemId, fill='green')
self.origin = origin
self.clickFlag = 'none'
#sets the goal Node
def setGoal(self, goal):
goal.isGoal = not goal.isGoal
if goal.isGoal:
self.canvas.itemconfig(goal.itemId, fill='red')
else:
self.canvas.itemconfig(goal.itemId, fill='blue')
self.clickFlag = 'none'
#Represents a character in the game that has both a main die and an ally die
class Character:
def __init__(self, name, mainDice, allyDice):
#the name of the character
self.name = name
#a list of the possible rolls for the main dice
self.mainDice = mainDice
#a list of the possible rolls for the ally dice
self.allyDice = allyDice
#The main GUI class
class ChooseDice:
def __init__(self, master):
#the main tkInter frame
self.frame = Frame(master)
#the levelCreator frame
self.levelCreate = LevelCreator(self.frame)
self.frame.grid(row=0, column=0)
#the button to set the origin Node
self.setOriginButton = Button(
self.frame, text='Set next node clicked to origin', fg='red', command=self.handleSetOrigin
)
self.setOriginButton.grid(row=1, column=0, columnspan=2)
#the button to set the Goal
self.setGoalButton = Button(
self.frame, text='Toggle next clicked node goal state', fg='red', command=self.handleSetGoal
)
self.setGoalButton.grid(row=2, column=0, columnspan=2)
#Label showing the number of turns
self.turnsLabelStringVar = StringVar()
self.turnsLabelResult = Label(self.frame, textvariable=self.turnsLabelStringVar)
self.turnsLabelResult.grid(row=1, column=2)
self.turnsLabelStringVar.set("# of turns:")
#Slider allowing input of the number of turns to solve for
self.turnsInputResult = Scale(self.frame, from_=1, to=30, orient=HORIZONTAL)
self.turnsInputResult.grid(row=1, column=3, rowspan=1, columnspan=1)
#the button that starts the solve
self.solveButton = Button(
self.frame, text='Solve', fg='red', command=self.solve
)
self.solveButton.grid(row=1, column=4, columnspan=5)
#the label that holds the result of the solve
self.solveResultStringVar = StringVar()
self.solveResult = Label(self.frame, textvariable=self.solveResultStringVar)
self.solveResult.grid(row=3, column=2, columnspan=5)
self.solveResultStringVar.set("")
#the button to add a new character
self.addButton = Button(
self.frame, text='Add character', fg='red', command=self.add
)
self.addButton.grid(row=1, column=9, columnspan=2)
#the button to remove the last added character
self.removeButton = Button(
self.frame, text='Remove character', fg='red', command=self.remove
)
self.removeButton.grid(row=2, column=9, columnspan=2)
#holds the drop down menus to select each character
self.characterMenus = []
#holds the names of all the characters
self.characterNames = []
allyDice = [1,2]
#list of all the possible characters
self.characterList = sorted([
Character('Donkey Kong', [0,0,0,0,10,10], allyDice),
Character('Bowser', [0,0,1,8,9,10], allyDice),
Character('Boo', [0,0,5,5,7,7], allyDice),
Character('Wario', [0,0,6,6,6,6], allyDice),
Character('Peach', [0,2,4,4,4,6], allyDice),
Character('Daisy', [3,3,3,3,4,4], allyDice),
Character('Dry Bones', [1,1,1,6,6,6], allyDice),
Character('Pom Pom', [0,3,3,3,3,8], allyDice),
Character('Mario', [1,3,3,3,5,6], allyDice),
Character('Luigi', [1,1,1,5,6,7], allyDice),
Character('Waluigi', [0,1,3,5,5,7], allyDice),
Character('Goomba', [0,0,3,4,5,6], allyDice),
Character('Bowser Jr.', [1,1,1,4,4,9], allyDice),
Character('Rosalina', [0,0,2,3,4,8], allyDice),
Character('Diddy Kong', [0,0,0,7,7,7], allyDice),
Character('Monty Mole', [0,2,3,4,5,6], allyDice),
Character('Shy Guy', [0,4,4,4,4,4], allyDice),
Character('Yoshi', [0,1,3,3,5,7], allyDice),
Character('Hammer Bro', [0,1,1,5,5,5], allyDice),
Character('Koopa', [1,1,2,3,3,10], allyDice)
], key=lambda character: character.name)
self.charactersMap = {}
for character in self.characterList:
self.charactersMap[character.name] = character
self.add()
#produces the best course of action to reach the goal node from the origin node
def solve(self):
origin = self.levelCreate.origin
if not origin:
return
diceDistributions = self.__genDistributions()
itCount = self.turnsInputResult.get()
for _, node in self.levelCreate.nodeMap.items():
fillVal = 1 if node.isGoal else 0
node.expected = [fillVal]*(itCount+1)
node.dice = [None]*(itCount+1)
node.bestRollChoices = [None]*(itCount+1)
for i in range(1, itCount+1):
for _, node in self.levelCreate.nodeMap.items():
maxExpected = 0
bestDice = None
bestRollChoices = None
for diceInd, dist in enumerate(diceDistributions):
rollExpected = [float("-inf") for _ in dist]
rollChoices = [() for _ in dist]
nodeStack = [(node, 0, ())]
while nodeStack:
nextNode, distance, curChoices = nodeStack.pop()
candidate = nextNode.expected[i-1]
if dist[distance] and candidate > rollExpected[distance]:
rollExpected[distance] = candidate
rollChoices[distance] = curChoices
if distance != len(dist)-1:
dirNeighbors = self.__neighborsToDirection(nextNode)
for neighbor, dirStr in dirNeighbors.items():
newChoices = curChoices
if dirStr:
newChoices += (dirStr,)
nodeStack.append((neighbor, distance+1, newChoices))
expectedValue = 0
totalDensity = 0
for ind, dens in enumerate(dist):
safeExpected = rollExpected[ind]
if safeExpected == float("-inf"):
safeExpected = 0
expectedValue += safeExpected * dens
totalDensity += dens
expectedValue /= totalDensity
if expectedValue > maxExpected:
maxExpected = expectedValue
bestDice = diceInd
bestRollChoices = rollChoices
if node.isGoal:
maxExpected += 1
node.expected[i] = maxExpected
node.dice[i] = bestDice
node.bestRollChoices[i] = bestRollChoices
characterInd = origin.dice[itCount]
if characterInd is None:
characterInd = 0
bestCharacterStr = self.characterNames[characterInd].get()
expectedValueStr = str(origin.expected[itCount])
resultStr = "Best character: " + bestCharacterStr + " with " + expectedValueStr + " goal squares after " + str(itCount) + " turns"
if origin.bestRollChoices[-1]:
for roll, choices in enumerate(origin.bestRollChoices[-1]):
if choices:
resultStr += "\nOn " + str(roll) + " roll: " + choices[0]
for choice in choices[1:]:
resultStr += ", " + choice
self.solveResultStringVar.set(resultStr)
#generates the distributions of possible rolls for each possible character choice
def __genDistributions(self):
out = []
selectedChars = [self.charactersMap.get(nameVar.get()) for nameVar in self.characterNames]
for charInd, character in enumerate(selectedChars):
allies = selectedChars[charInd+1:]+selectedChars[:charInd]
dice = [[0,0]] + [character.mainDice] + [ally.allyDice for ally in allies]
maxRoll = 0
for d in dice:
maxRoll += d[-1]
curDist = [0]*(maxRoll+1)
indStack = [0]
curSum = 0
while indStack[0] == 0:
while len(indStack) < len(dice):
curSum += dice[len(indStack)][0]
indStack.append(0)
curDist[curSum] += 1
curSum -= dice[len(indStack) - 1][indStack[-1]]
indStack[-1] += 1
while indStack[-1] == len(dice[len(indStack) - 1]):
indStack.pop()
curSum -= dice[len(indStack) - 1][indStack[-1]]
indStack[-1] += 1
curSum += dice[len(indStack) - 1][indStack[-1]]
out.append(curDist)
return out
#returns English descriptions of the relative positions of each neighbor to the passed-in node
def __neighborsToDirection(self, node):
canvas = self.levelCreate.canvas
dirNeighbors = {}
if len(node.neighbors) == 1:
for neighbor in node.neighbors:
dirNeighbors[neighbor] = ""
elif not node.parents:
for neighbor in node.neighbors:
line, _ = node.neighbors[neighbor]
lineCoords = canvas.coords(line.lineId)
rotatedDir = math.atan2(lineCoords[2]-lineCoords[0], lineCoords[1]-lineCoords[3])
dirNeighbors[neighbor] = str(int(rotatedDir*180/math.pi))+" degrees clockwise from North"
else:
leftNeighbors = []
for neighbor in node.neighbors:
accum = [0,0]
for parent, (line, _) in node.parents.items():
lineCoords = canvas.coords(line.lineId)
accum[0] += lineCoords[2]-lineCoords[0]
accum[1] += lineCoords[1]-lineCoords[3]
fromDir = math.atan2(*accum)
line, _ = node.neighbors[neighbor]
lineCoords = canvas.coords(line.lineId)
toDir = math.atan2(lineCoords[2]-lineCoords[0], lineCoords[1]-lineCoords[3])
rotatedDir = (toDir-fromDir)%(2*math.pi)
if rotatedDir > math.pi:
rotatedDir -= 2*math.pi
leftNeighbors.append((rotatedDir, neighbor))
leftNeighbors.sort(key=lambda neigh: neigh[0])
if len(leftNeighbors) == 2:
dirNeighbors[leftNeighbors[0][1]] = "left"
dirNeighbors[leftNeighbors[1][1]] = "right"
else:
for ind, (_, neighbor) in enumerate(leftNeighbors):
dirNeighbors[neighbor] = str(ind+1)+self.__ordinal(ind+1)+" from left"
return dirNeighbors
#produces the English ordinal suffix for the passed in number
def __ordinal(self, num):
mod = num%10
if mod == 1 and num != 11:
return "st"
if mod == 2 and num != 12:
return "nd"
if mod == 3 and num != 13:
return "rd"
return "th"
#handler for clicking the set origin button
def handleSetOrigin(self):
self.levelCreate.clickFlag = 'setOrigin'
#handler for clicking the set goal button
def handleSetGoal(self):
self.levelCreate.clickFlag = 'setGoal'
#handler for clicking the add character button
def add(self):
if len(self.characterMenus) < 5:
dice = StringVar(self.frame)
dice.set('Mario')
menu = OptionMenu(self.frame, dice, *sorted([name for name in self.charactersMap.keys()]))
menu.grid(row=2, column=2+len(self.characterMenus))
self.characterMenus.append(menu)
self.characterNames.append(dice)
#handler for clicking the remove character button
def remove(self):
if len(self.characterMenus) > 1:
self.characterMenus.pop().destroy()
self.characterNames.pop()
if __name__ == "__main__":
root = Tk(className='Choose dice')
app = ChooseDice(root)
root.mainloop()