-
Notifications
You must be signed in to change notification settings - Fork 50
NI RFmx LTE ACP Configuration Functions
- RFmxLTE_ACPCfgAveraging
- RFmxLTE_ACPCfgSweepTime
- RFmxLTE_ACPCfgNoiseCompensationEnabled
- RFmxLTE_ACPCfgMeasurementMethod
- RFmxLTE_ACPCfgConfigurableNumberOfOffsetsEnabled
- RFmxLTE_ACPCfgUTRAAndEUTRAOffsets
- RFmxLTE_ACPCfgNumberOfUTRAOffsets
- RFmxLTE_ACPCfgNumberOfEUTRAOffsets
- RFmxLTE_ACPCfgNumberOfGSMOffsets
- RFmxLTE_ACPCfgRBWFilter
- RFmxLTE_ACPCfgPowerUnits
- RFmxLTE_ACPValidateNoiseCalibrationData
- RFmxLTE_BuildSubblockString
int32 __stdcall RFmxLTE_ACPCfgAveraging (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 averagingEnabled, int32 averagingCount, int32 averagingType);
Configures averaging for the ACP measurement.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
averagingEnabled | int32 | Specifies whether to enable averaging for the measurement. |
RFMXLTE_VAL_ACP_AVERAGING_ENABLED_FALSE (0) | The measurement is performed on a single acquisition. |
---|---|
RFMXLTE_VAL_ACP_AVERAGING_ENABLED_TRUE (1) | The measurement is averaged over multiple acquisitions. The number of acquisitions is obtained by the averagingCount parameter. |
averagingCount | int32 | Specifies the number of acquisitions used for averaging when you set the averagingEnabled parameter to RFMXLTE_VAL_ACP_AVERAGING_ENABLED_TRUE. |
averagingType | int32 | Specifies the averaging type for averaging multiple spectrum acquisitions. The averaged spectrum is used for the measurement. |
RFMXLTE_VAL_ACP_AVERAGING_TYPE_RMS (0) | The power spectrum is linearly averaged. RMS averaging reduces signal fluctuations but not the noise floor. |
---|---|
RFMXLTE_VAL_ACP_AVERAGING_TYPE_LOG (1) | The power spectrum is averaged in a logarithmic scale. |
RFMXLTE_VAL_ACP_AVERAGING_TYPE_SCALAR (2) | The square root of the power spectrum is averaged. |
RFMXLTE_VAL_ACP_AVERAGING_TYPE_MAXIMUM (3) | The peak power in the spectrum at each frequency bin is retained from one acquisition to the next. |
RFMXLTE_VAL_ACP_AVERAGING_TYPE_MINIMUM (4) | The lowest power in the spectrum at each frequency bin is retained from one acquisition to the next. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_ACPCfgSweepTime (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 sweepTimeAuto, float64 sweepTimeInterval);
Configures the sweep time.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
sweepTimeAuto | int32 | Specifies whether the measurement computes the sweep time. |
RFMXLTE_VAL_ACP_SWEEP_TIME_AUTO_FALSE (0) | The measurement uses the sweep time that you specify in the sweepTimeInterval parameter. |
---|---|
RFMXLTE_VAL_ACP_SWEEP_TIME_AUTO_TRUE (1) | The measurement uses a sweep time of 1 ms. |
sweepTimeInterval | float64 | Specifies the sweep time when you set the sweepTimeAuto parameter to RFMXLTE_VAL_ACP_SWEEP_TIME_AUTO_FALSE. This value is expressed in seconds. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_ACPCfgNoiseCompensationEnabled (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 noiseCompensationEnabled);
Configures compensation of the channel powers for the inherent noise floor of the signal analyzer.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
noiseCompensationEnabled | int32 | Specifies whether to enable compensation of the channel powers for the inherent noise floor of the signal analyzer. |
RFMXLTE_VAL_ACP_NOISE_COMPENSATION_ENABLED_FALSE (0) | Disables compensation of the channel powers for the noise floor of the signal analyzer. |
---|---|
RFMXLTE_VAL_ACP_NOISE_COMPENSATION_ENABLED_TRUE (1) | Enables compensation of the channel powers for the noise floor of the signal analyzer. The noise floor of the signal analyzer is measured for the RF path used by the ACP measurement and cached for future use. If signal analyzer or measurement parameters change, noise floors are remeasured. supportedDevices: PXIe-5663/5665/5668, PXIe-5830/5831/5832 |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_ACPCfgMeasurementMethod (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 measurementMethod);
Configures the method for performing the ACP measurement.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
measurementMethod | int32 | Specifies the method for performing the ACP measurement. |
RFMXLTE_VAL_ACP_MEASUREMENT_METHOD_NORMAL (0) | The ACP measurement acquires the spectrum using the same signal analyzer setting across frequency bands. Use this method when measurement speed is desirable over higher dynamic range. |
---|---|
RFMXLTE_VAL_ACP_MEASUREMENT_METHOD_DYNAMIC_RANGE (1) | The ACP measurement acquires the spectrum using the hardware-specific optimizations for different frequency bands. Use this method to get the best dynamic range. Supported Devices: PXIe-5665/5668R |
RFMXLTE_VAL_ACP_MEASUREMENT_METHOD_SEQUENTIAL_FFT (2) | The ACP measurement acquires I/Q samples specified by the RFMXLTE_ATTR_ACP_SWEEP_TIME_INTERVAL) attribute. These samples are divided into smaller chunks defined by the RFMXLTE_ATTR_ACP_SEQUENTIAL_FFT_SIZE) attribute, and FFT is computed on each of these chunks. The resultant FFTs are averaged to get the spectrum and is used to compute ACP. If the total acquired samples is not an integer multiple of the FFT size, the remaining samples at the end of the acquisition are not used. If the total acquired samples is not an integer multiple of the FFT size, the remaining samples at the end of the acquisition are not used. Use this method to optimize for speed. The accuracy of results may be reduced when using this measurement method. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_ACPCfgConfigurableNumberOfOffsetsEnabled (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 configurableNumberOfOffsetsEnabled);
Configures whether the number of offsets will be computed by the measurement or configured by the user.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
configurableNumberOfOffsetsEnabled | int32 | Specifies whether the number of offsets is computed by measurement or configured by you. When the carrier bandwidth is 200 kHz or the RFMXLTE_ATTR_LINK_DIRECTION) is RFMXLTE_VAL_LINK_DIRECTION_DOWNLINK, the default value is false. Incase of downlink, this attribute is applicable only for number of EUTRA offsets. For the number of UTRA offsets, only 3GPP specification defined values are supported. |
RFMXLTE_VAL_ACP_CONFIGURABLE_NUMBER_OF_OFFSETS_ENABLED_FALSE (0) | Measurement will set the number of offsets. |
---|---|
RFMXLTE_VAL_ACP_CONFIGURABLE_NUMBER_OF_OFFSETS_ENABLED_TRUE (1) | Measurement will use the user configured value for number of offsets. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_ACPCfgUTRAAndEUTRAOffsets (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 numberOfUTRAOffsets, int32 numberOfEUTRAOffsets);
Configures the number of universal terrestrial radio access (UTRA) and evolved universal terrestrial radio access (E-UTRA) adjacent channels of the subblock. This function is valid only for uplink single carrier, and contiguous carrier aggregation. In case of uplink non-contiguous multi-carrier and downlink, the number of UTRA/EUTRA offsets are determined from the 3GPP specification. Use "subblock<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name and the subblock number. If you do not specify the signal name, the default signal instance is used. Example: "subblock0" "signal::sig1/subblock0" You can use the RFmxLTE_BuildSubblockString) function to build the selector string. |
numberOfUTRAOffsets | int32 | Specifies the number of UTRA adjacent channel offsets to be configured at offset positions as defined in the 3GPP specification. |
numberOfEUTRAOffsets | int32 | Specifies the number of E-UTRA adjacent channel offsets to be configured at offset positions as defined in the 3GPP specification. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_ACPCfgNumberOfUTRAOffsets (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 numberOfUTRAOffsets);
Configures the number of universal terrestrial radio access (UTRA) adjacent channels of the subblock, when you set the ACP Configurable Number of Offset Enabled attribute to true. Use "subblock<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name and the subblock number. If you do not specify the signal name, the default signal instance is used. Example: "subblock0" "signal::sig1/subblock0" You can use the RFmxLTE_BuildSubblockString) function to build the selector string. |
numberOfUTRAOffsets | int32 | Specifies the number of UTRA adjacent channel offsets to be configured at offset positions, when you set the ACP Configurable Number of Offset Enabled attribute to true. In case of downlink, only 3GPP specification defined values are supported. In case of non-contiguous carrier aggregation, the configured value will be used only for the outer offsets and the offset channels in the gap region are defined as per the 3GPP specification. Offset power reference for the outer UTRA offsets are set according to the value of RFMXLTE_ATTR_ACP_EUTRA_OFFSET_DEFINITION) attribute. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_ACPCfgNumberOfEUTRAOffsets (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 numberOfEUTRAOffsets);
Configures the number of evolved universal terrestrial radio access adjacent channels of the subblock, when you set the ACP Configurable Number of Offset Enabled attribute to true. Use "subblock<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name and the subblock number. If you do not specify the signal name, the default signal instance is used. Example: "subblock0" "signal::sig1/subblock0" You can use the RFmxLTE_BuildSubblockString) function to build the selector string. |
numberOfEUTRAOffsets | int32 | Specifies the number of E-UTRA adjacent channel offsets to be configured at offset positions, when you set the ACP Configurable Number of Offset Enabled attribute to true. In case of non-contiguous carrier aggregation, the configured value will be used only for the outer offsets and the offset channels in the gap region are defined as per the 3GPP specification. Offset integration bandwidth and offset power reference for the outer E-UTRA offsets are set according to the value of RFMXLTE_ATTR_ACP_EUTRA_OFFSET_DEFINITION) attribute. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_ACPCfgNumberOfGSMOffsets (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 numberOfGSMOffsets);
Configures the number of GSM adjacent channels of the subblock, when you set the ACP Configurable Number of Offset Enabled attribute to true. Use "subblock<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name and the subblock number. If you do not specify the signal name, the default signal instance is used. Example: "subblock0" "signal::sig1/subblock0" You can use the RFmxLTE_BuildSubblockString) function to build the selector string. |
numberOfGSMOffsets | int32 | Specifies the number of GSM adjacent channel offsets to be configured when the channel bandwidth is 200 kHz (NB-IOT), when you set the ACP Configurable Number of Offset Enabled attribute to true. The frequency offset from the center of NB-IOT carrier to the center of the first offset is 300 kHz as defined in the 3GPP specification. The center of every other offset is placed at 200 kHz from the previous offset's center. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_ACPCfgRBWFilter (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 RBWAuto, float64 RBW, int32 RBWFilterType);
Configures the RBW filter.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
RBWAuto | int32 | Specifies whether the measurement computes the RBW. |
RFMXLTE_VAL_ACP_RBW_FILTER_AUTO_BANDWIDTH_FALSE (0) | The measurement uses the RBW that you specify in the RBW parameter. |
---|---|
RFMXLTE_VAL_ACP_RBW_FILTER_AUTO_BANDWIDTH_TRUE (1) | The measurement computes the RBW. |
RBW | float64 | Specifies the bandwidth of the RBW filter used to sweep the acquired signal, when you set the RBWAuto parameter to RFMXLTE_VAL_ACP_RBW_FILTER_AUTO_BANDWIDTH_FALSE. This value is expressed in Hz. |
RBWFilterType | int32 | Specifies the shape of the digital RBW filter. |
RFMXLTE_VAL_ACP_RBW_FILTER_TYPE_FFT_BASED (0) | No RBW filtering is performed. |
---|---|
RFMXLTE_VAL_ACP_RBW_FILTER_TYPE_GAUSSIAN (1) | An RBW filter with a Gaussian response is applied. |
RFMXLTE_VAL_ACP_RBW_FILTER_TYPE_FLAT (2) | An RBW filter with a flat response is applied. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_ACPCfgPowerUnits (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 powerUnits);
Configures the units for absolute power.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
averagingEnabled | int32 | Specifies the units for absolute power. |
RFMXLTE_VAL_ACP_POWER_UNITS_DBM (0) | The absolute powers are reported in dBm. |
---|---|
RFMXLTE_VAL_ACP_POWER_UNITS_DBM_BY_HZ (1) | The absolute powers are reported in dBm/Hz. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_ACPValidateNoiseCalibrationData (niRFmxInstrHandle instrumentHandle, char selectorString[], int32* noiseCalibrationDataValid);
Indicates whether calibration data is valid for the configuration specified by the signal name in the selectorString parameter.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
Output | ||
Name | Type | Description |
noiseCalibrationDataValid | int32* | Returns whether the calibration data is valid. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_BuildSubblockString (char selectorString[], int32 subblockNumber, int32 selectorStringOutLength, char selectorStringOut[]);
Creates the subblock string to use as the selector string with the subblock configuration or fetch attributes and functions.
Input | ||
---|---|---|
Name | Type | Description |
selectorString | char[] | Specifies a selector string) comprising of the signal name and the result name. If you do not specify the signal name, the default signal instance is used. If you do not specify the result name, the default result instance is used. Example: "signal::sig1" "result::r1" "signal::sig1/result::r1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
subblockNumber | int32 | Specifies the number of subblocks that are configured in the intra-band noncontiguous carrier aggregation. Set this parameter to 1, which is the default, for single carrier and intra-band contiguous carrier aggregation. |
selectorStringOutLength | int32 | Specifies the length of the string that is returned by the selectorStringOut parameter. To get the minimum buffer size required to build the selector string, set the selectorStringOutLength parameter to 0. |
Output | ||
Name | Type | Description |
selectorStringOut | char[] | Returns the selector string created by this function. |
Name | Type | Description |
---|---|---|
statusOrRequiredSize | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. When the statusOrRequiredSize return value returns the buffer size, the status code is not returned. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
Creating and Setting Up a gRPC Server
Session Utilities API Reference
gRPC API Differences From C API
Sharing Driver Sessions Between Clients
C API Docs
NI-DAQmx
- gRPC API Differences From C API
- Task Configuration And Control
- Channel Configuration And Creation
- Timing
- Triggering
- Read Functions
- Write Functions
- Export Hardware Signals
- Scale Configuration
- Internal Buffer Configuration
- Advanced Functions
- System Configuration
- Error Handling
- Buffer Attributes
- Calibration Info Attributes
- Channel Attributes
- Device Attributes
- Export Signal Attributes
- Persisted Channel Attributes
- Persisted Scale Attributes
- Persisted Task Attributes
- Physical Channel Attributes
- Read Attributes
- Scale Attributes
- System Attributes
- Task Attributes
- Timing Attributes
- Trigger Attributes
- Watchdog Attributes
- Write Attributes
NI-DCPOWER
- Setup Functions
- Configure Functions
- Measurement Functions
- Control Functions
- Trigger And Event
- Attribute Functions
- Query Functions
- Calibration Functions
- Utility Functions
- Supported Device
- Source Attributes
- Transient Attributes
- Voltage Attributes
- Current Attributes
- Pulse Voltage Attributes
- Pulse Current Attributes
- Cutoff Attributes
- Measurement Attributes
- Trigger Attributes Functions
- Event Attributes
- Advanced Attributes
- Inherent Ivi Attributes
- Supported Device Attributes
NI-DIGITAL PATTERN DRIVER
- Init And Close Functions
- Session Locking Functions
- Utility Functions
- Error Handling Functions
- Calibration Functions
- Attributes Functions
- Pin Map Functions
- Low Level Functions
- Low Level Action Functions
- Pin Control Functions
- Static IO Functions
- Clock Generator Functions
- Levels And Timing Functions
- TDR Functions
- PPMU Configuration Functions
- DC Voltage Functions
- DC Current Functions
- PPMU Action Functions
- Pattern Configuration Functions
- Pattern Action Functions
- History Ram Functions
- Source Memory Functions
- Capture Memory Functions
- Triggers And Events Functions
- Conditional Jump Trigger Functions
- Sequencer Flag Functions
- Sequencer Register Functions
- Match Fail Combination Functions
- Pattern Results Functions
- Sort Results Functions
- Frequency Measurement Functions
- IVI Inherent Attributes
- Specific Driver Information Attributes, Read Only
- Driver Setup Information Attributes
- Device Attributes
- Pin Control Attributes
- Level Configuration Attributes
- Trigger Configuration Attributes
- PPMU Attributes
- Patterns Attributes
- Pattern Opcode Event Attributes
- Timing Offset Attributes
- Keep Alive Attributes
- Frequency Measurement Attributes
- Clock Generator Attributes
- History RAM
- Synchronization Attributes
- TDR Endpoint Termination Attributes
NI-FGEN
- Setup Functions
- Configuration Functions
- Standard Output Functions
- Arbitrary Waveform Output Functions
- Arbitrary Sequence Output Functions
- Incremental Waveform Write Functions
- Configure Clock Functions
- Trigger And Syncronizations Functions
- 5404 Routing Functions
- Script Output Functions
- Configure Onboard Signal Processing Functions
- Configure Peer To Peer Functions
- Attribute Functions
- Waveform Control Functions
- Error Functions
- Output Attributes
- Arbitrary Waveform Attributes
- Data Transfer Attributes
- Onboard Signal Processing Attributes
- Peer To Peer Attributes
- Standard Function Attributes
- Clock Attributes
- Event Attributes
- Triggering Attributes
- Instrument Specific Attributes
- Inherent IVI Attributes
- 5401 5411 5431
NI-RFmx Bluetooth
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Fetch Results Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Packet Attributes
- Auto Detect Signal Attributes
- Modacc Attributes
- ACP Attributes
- Twenty dB Attributes
- Frequency Range Attributes
- TXP Attributes
- Advanced Attributes
NI-RFmx NR
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attributes Functions
- Fetch Results Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Signal Detection Attributes
- Component Carrier Attributes
- List Attributes
- Modacc Attributes
- ACP Attributes
- CHP Attributes
- OBW Attributes
- SEM Attributes
- TXP Attributes
- Pvt Attributes
- Advanced Attributes
NI-RFmx LTE
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Ch Configuration Functions
- NB IoT Configuration Functions
- ModAcc Configuration Functions
- ACP Configuration Functions
- CHP Configuration Functions
- OBW Configuration Functions
- SEM Configuration Functions
- PVT Configuration Functions
- SlotPhase Configuration Functions
- SlotPower Configuration Functions
- Set And Get Attribute Functions
- ModAcc Fetch Functions
- ACP Fetch Functions
- CHP Fetch Functions
- OBW Fetch Functions
- SEM Fetch Functions
- PVT Fetch Functions
- SlotPhase Fetch Functions
- SlotPower Fetch Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Component Carrier Attributes
- ModAcc Attributes
- ACP Attributes
- CHP Attributes
- OBW Attributes
- SEM Attributes
- PVT Attributes
- SlotPhase Attributes
- SlotPower Attributes
- Advanced Attributes
NI-RFmx SpecAn
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Read Functions
- Fetch Functions
- Utility Functions
- Marker Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- ACP Attributes
- Cdf Attributes
- CHP Attributes
- Fcnt Attributes
- Harm Attributes
- OBW Attributes
- SEM Attributes
- Spectrum Attributes
- Spur Attributes
- TXP Attributes
- AMPM Attributes
- Dpd Attributes
- IQ Attributes
- IM Attributes
- NF Attributes
- Phasenoise Attributes
- PAVT Attributes
- Advanced Attributes
NI-RFmx WLAN
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Fetch DSSS ModAcc Functions
- Fetch OFDM ModAcc Functions
- Fetch SEM Functions
- Fetch TXP Functions
- Fetch PowerRamp Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- OFDM Attributes
- Auto Detect Signal Attributes
- DSSS ModAcc Attributes
- OFDM ModAcc Attributes
- SEM Attributes
- TXP Attributes
- PowerRamp Attributes
- Advanced Attributes
NI-RFSA
- General Functions
- Configuration Functions
- Acquisition Functions
- Utility Functions
- Calibration Functions
- General Attributes
- Vertical Attributes
- Signal Path Attributes
- Acquisition Attributes
- Acquisition Attributes
- Triggers Attributes
- Events Attributes
- Device Characteristics Attributes
- Peer To Peer Streaming Attributes
- Configuration List Attributes
- Inherent IVI Properties Attributes
- De-embedding Attributes
- Self Calibration Attributes
- Factory Calibration Attributes
- External Alignment Attributes
- Device Specific Attributes
NI-RFSG
- General Functions
- Generation Configuration
- Utility Functions
- Calibration Functions
- Arb Attributes
- Clock Attributes
- Configuration List Attributes
- De-embedding Attributes
- Device Characteristics Attributes
- Device Specific Attributes
- Events Attributes
- External Calibration Attributes
- Inherent IVI Attributes Attributes
- IQ Impairment Attributes
- Load Configurations Attributes
- Modulation Attributes
- Obsolete Attributes
- Peer To Peer Attributes
- RF Attributes
- Self Calibration Attributes
- Triggers Attributes
NI-SCOPE
- Setup Functions
- Configure Functions
- Attribute Functions
- Acquisition Functions
- Measurement Functions
- Calibrate Functions
- Utility Funcitons
- Error Handling Functions
- IVI Compliance Or Obsolete Functions
- Vertical Attributes
- Horizontal Attributes
- Trigger Attributes
- Clocking Attributes
- Synchronization Attributes
- Acquisition Attributes
- Waveform Measurements Attributes
- Onboard Signal Processing Attributes
- Peer To Peer Streaming Attributes
- Device Attributes
- IVI Or Obsolete Attributes
- Instrument Capabilities Attributes
- If Digitizer Attributes
NI-XNET
- gRPC API differences from C APIs
- General Functions
- Cluster Properties
- Database Properties
- Device Properties
- ECU Properties
- Frame Properties
- Interface Properties
- LIN Schedule Entry Properties
- LIN Schedule Properties
- PDU Properties
- Session Ethernet Properties
- Session Frame Properties
- Session Interface Properties
- Session Properties
- Session SAE J1939 Properties
- Signal Properties
- Subframe Properties
- System Properties
- IP-Stack Functions
- Socket Options
- Socket Functions