-
Notifications
You must be signed in to change notification settings - Fork 50
NI RFmx LTE ModAcc Configuration Functions
- RFmxLTE_ModAccCfgAveraging
- RFmxLTE_ModAccCfgSynchronizationModeAndInterval
- RFmxLTE_ModAccCfgEVMUnit
- RFmxLTE_ModAccCfgFFTWindowOffset
- RFmxLTE_ModAccCfgCommonClockSourceEnabled
- RFmxLTE_ModAccCfgFFTWindowPosition
- RFmxLTE_ModAccCfgInBandEmissionMaskType
int32 __stdcall RFmxLTE_ModAccCfgAveraging (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 averagingEnabled, int32 averagingCount);
Configures averaging for the ModAcc measurement.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
averagingEnabled | int32 | Specifies whether to enable averaging for the measurement. |
RFMXLTE_VAL_MODACC_AVERAGING_ENABLED_FALSE (0) | The measurement is performed on a single acquisition. |
---|---|
RFMXLTE_VAL_MODACC_AVERAGING_ENABLED_TRUE (1) | The measurement is averaged over multiple acquisitions. The number of acquisitions is obtained by the averagingCount parameter. |
averagingCount | int32 | Specifies the number of acquisitions used for averaging when you set the averagingEnabled parameter to RFMXLTE_VAL_MODACC_AVERAGING_ENABLED_TRUE. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_ModAccCfgSynchronizationModeAndInterval (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 synchronizationMode, int32 measurementOffset, int32 measurementLength);
Configures the synchronizationMode, the measurementOffset, and the measurementLength parameters of the ModAcc measurement. Refer to the LTE Modulation Accuracy (ModAcc)) topic for more information about ModAcc measurements.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
synchronizationMode | int32 | Specifies whether the measurement is performed from the frame or the slot boundary. When you set the RFMXLTE_ATTR_LINK_DIRECTION) attribute to RFMXLTE_VAL_LINK_DIRECTION_DOWNLINK, the measurement supports only frame synchronization mode. |
RFMXLTE_VAL_MODACC_SYNCHRONIZATION_MODE_FRAME (0) | The frame boundary is detected, and the measurement is performed over the measurementLength parameter, starting at the measurementOffset parameter from the frame boundary. When you set the RFMXLTE_ATTR_TRIGGER_TYPE) attribute to RFMXLTE_VAL_TRIGGER_TYPE_DIGITAL_EDGE, the measurement expects a trigger at the frame boundary. |
---|---|
RFMXLTE_VAL_MODACC_SYNCHRONIZATION_MODE_SLOT (1) | The slot boundary is detected, and the measurement is performed over the measurementLength parameter starting at the measurementOffset parameter from the slot boundary. When you set the RFMXLTE_ATTR_TRIGGER_TYPE attribute to RFMXLTE_VAL_TRIGGER_TYPE_DIGITAL_EDGE, the measurement expects a trigger at any slot boundary. |
RFMXLTE_VAL_MODACC_SYNCHRONIZATION_MODE_MARKER (2) | The measurement expects a marker (trigger) at the frame boundary from the user. The measurement takes advantage of triggered acquisitions to reduce processing resulting in faster measurement time. Measurement is performed over the measurementLength parameter starting at the measurementOffset parameter from the frame boundary. |
measurementOffset | int32 | Specifies the measurement offset, in slots, to skip from the synchronization boundary. The synchronization boundary is specified by the synchronizationMode parameter. |
measurementLength | int32 | Specifies the number of slots to be measured. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_ModAccCfgEVMUnit (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 EVMUnit);
Configures the units of the EVM results.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
EVMUnit | int32 | Specifies the units of the EVM results. |
RFMXLTE_VAL_MODACC_EVM_UNIT_PERCENTAGE (0) | The EVM is reported in percentage. |
---|---|
RFMXLTE_VAL_MODACC_EVM_UNIT_DB (1) | The EVM is reported in dB. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_ModAccCfgFFTWindowOffset (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 FFTWindowOffset);
Configures the position of the FFT window that is used to calculate the EVM.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
FFTWindowOffset | float64 | Specifies the position of the FFT window that is used to calculate the EVM. The offset is expressed as a percentage of the cyclic prefix length. If you set this parameter to 0, the EVM window starts from the end of cyclic prefix. If you set this parameter to 100, the EVM window starts from the beginning of cyclic prefix. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_ModAccCfgCommonClockSourceEnabled (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 commonClockSourceEnabled);
Configures the Reference Clock and specifies whether same Reference Clock is used for local oscillator and D/A converter. The modacc measurement ignores this function, when you set the RFMXLTE_ATTR_LINK_DIRECTION) attribute to RFMXLTE_VAL_LINK_DIRECTION_DOWNLINK.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
commonClockSourceEnabled | int32 | Specifies whether the same Reference Clock is used for the local oscillator and the D/A converter. When the same Reference Clock is used, the carrier frequency offset is proportional to the Sample Clock error. |
RFMXLTE_VAL_MODACC_COMMON_CLOCK_SOURCE_ENABLED_FALSE (0) | The Sample Clock error is estimated independently. |
---|---|
RFMXLTE_VAL_MODACC_COMMON_CLOCK_SOURCE_ENABLED_TRUE (1) | The Sample Clock error is estimated from carrier frequency offset. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_ModAccCfgFFTWindowPosition (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 FFTWindowType, float64 FFTWindowOffset, float64 FFTWindowLength);
Configures the FFT window position used for an EVM calculation. Refer to the LTE Modulation Accuracy (ModAcc)) topic for more information about FFT window position.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
FFTWindowType | int32 | Specifies the FFT window type used for an EVM calculation. |
RFMXLTE_VAL_MODACC_FFT_WINDOW_TYPE_3GPP (0) | The maximum EVM between the start window position and the end window position is returned according to the 3GPP specification. The window positions are specified by the FFTWindowLength parameter. For more information about the FFT window specification, refer to the 3GPP TS 36.521 specification, Annexe E.3.2. |
---|---|
RFMXLTE_VAL_MODACC_FFT_WINDOW_TYPE_CUSTOM (1) | Only one FFT window position is used for the EVM calculation. The FFT window position is specified by the FFTWindowOffset parameter. |
FFTWindowOffset | float64 | Specifies the position of the FFT window used to calculate the EVM. The offset is expressed as a percentage of the cyclic prefix length. If you set this parameter to 0, the EVM window starts from the end of cyclic prefix. If you set this parameter to 100, the EVM window starts from the beginning of cyclic prefix. |
FFTWindowLength | float64 | Specifies the FFT window length. This value is expressed in a percentage of the cyclic prefix length. This parameter is used when you set the FFTWindowType parameter to RFMXLTE_VAL_MODACC_FFT_WINDOW_TYPE_3GPP, where you need to calculate the EVM using two different FFT window positions, Delta_C-W/2, and Delta_C+W/2. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxLTE_ModAccCfgInBandEmissionMaskType (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 inBandEmissionMaskType);
Configures the inBandEmissionMaskType parameter to be used.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Specifies the instrument session. The RFmx obtains this parameter from the RFmxLTE_Initialize) function. |
selectorString | char[] | Specifies a selector string) comprising of the signal name. If you do not specify the signal name, the default signal instance is used. Example: "signal::sig1" You can use the RFmxLTE_BuildSignalString) function to build the selector string. |
inBandEmissionMaskType | int32 | Specifies the in-band emissions mask type to be used for measuring in-band emission margin (dB) and subblock in-Band emission margin (dB) results. Refer to section 6.5.2.3.5 of the 3GPP 36.521-1 specification for more information. |
RFMXLTE_VAL_MODACC_IN_BAND_EMISSION_MASK_TYPE_RELEASE_8_10 (0) | Specifies the mask type to be used for UE, supporting 3GPP Release 8 to 3GPP Release 10 specification. |
---|---|
RFMXLTE_VAL_MODACC_IN_BAND_EMISSION_MASK_TYPE_RELEASE_11_ONWARDS (1) | Specifies the mask type to be used for UE, supporting 3GPP Release 11 and higher specification. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxLTE_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
Creating and Setting Up a gRPC Server
Session Utilities API Reference
gRPC API Differences From C API
Sharing Driver Sessions Between Clients
C API Docs
NI-DAQmx
- gRPC API Differences From C API
- Task Configuration And Control
- Channel Configuration And Creation
- Timing
- Triggering
- Read Functions
- Write Functions
- Export Hardware Signals
- Scale Configuration
- Internal Buffer Configuration
- Advanced Functions
- System Configuration
- Error Handling
- Buffer Attributes
- Calibration Info Attributes
- Channel Attributes
- Device Attributes
- Export Signal Attributes
- Persisted Channel Attributes
- Persisted Scale Attributes
- Persisted Task Attributes
- Physical Channel Attributes
- Read Attributes
- Scale Attributes
- System Attributes
- Task Attributes
- Timing Attributes
- Trigger Attributes
- Watchdog Attributes
- Write Attributes
NI-DCPOWER
- Setup Functions
- Configure Functions
- Measurement Functions
- Control Functions
- Trigger And Event
- Attribute Functions
- Query Functions
- Calibration Functions
- Utility Functions
- Supported Device
- Source Attributes
- Transient Attributes
- Voltage Attributes
- Current Attributes
- Pulse Voltage Attributes
- Pulse Current Attributes
- Cutoff Attributes
- Measurement Attributes
- Trigger Attributes Functions
- Event Attributes
- Advanced Attributes
- Inherent Ivi Attributes
- Supported Device Attributes
NI-DIGITAL PATTERN DRIVER
- Init And Close Functions
- Session Locking Functions
- Utility Functions
- Error Handling Functions
- Calibration Functions
- Attributes Functions
- Pin Map Functions
- Low Level Functions
- Low Level Action Functions
- Pin Control Functions
- Static IO Functions
- Clock Generator Functions
- Levels And Timing Functions
- TDR Functions
- PPMU Configuration Functions
- DC Voltage Functions
- DC Current Functions
- PPMU Action Functions
- Pattern Configuration Functions
- Pattern Action Functions
- History Ram Functions
- Source Memory Functions
- Capture Memory Functions
- Triggers And Events Functions
- Conditional Jump Trigger Functions
- Sequencer Flag Functions
- Sequencer Register Functions
- Match Fail Combination Functions
- Pattern Results Functions
- Sort Results Functions
- Frequency Measurement Functions
- IVI Inherent Attributes
- Specific Driver Information Attributes, Read Only
- Driver Setup Information Attributes
- Device Attributes
- Pin Control Attributes
- Level Configuration Attributes
- Trigger Configuration Attributes
- PPMU Attributes
- Patterns Attributes
- Pattern Opcode Event Attributes
- Timing Offset Attributes
- Keep Alive Attributes
- Frequency Measurement Attributes
- Clock Generator Attributes
- History RAM
- Synchronization Attributes
- TDR Endpoint Termination Attributes
NI-FGEN
- Setup Functions
- Configuration Functions
- Standard Output Functions
- Arbitrary Waveform Output Functions
- Arbitrary Sequence Output Functions
- Incremental Waveform Write Functions
- Configure Clock Functions
- Trigger And Syncronizations Functions
- 5404 Routing Functions
- Script Output Functions
- Configure Onboard Signal Processing Functions
- Configure Peer To Peer Functions
- Attribute Functions
- Waveform Control Functions
- Error Functions
- Output Attributes
- Arbitrary Waveform Attributes
- Data Transfer Attributes
- Onboard Signal Processing Attributes
- Peer To Peer Attributes
- Standard Function Attributes
- Clock Attributes
- Event Attributes
- Triggering Attributes
- Instrument Specific Attributes
- Inherent IVI Attributes
- 5401 5411 5431
NI-RFmx Bluetooth
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Fetch Results Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Packet Attributes
- Auto Detect Signal Attributes
- Modacc Attributes
- ACP Attributes
- Twenty dB Attributes
- Frequency Range Attributes
- TXP Attributes
- Advanced Attributes
NI-RFmx NR
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attributes Functions
- Fetch Results Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Signal Detection Attributes
- Component Carrier Attributes
- List Attributes
- Modacc Attributes
- ACP Attributes
- CHP Attributes
- OBW Attributes
- SEM Attributes
- TXP Attributes
- Pvt Attributes
- Advanced Attributes
NI-RFmx LTE
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Ch Configuration Functions
- NB IoT Configuration Functions
- ModAcc Configuration Functions
- ACP Configuration Functions
- CHP Configuration Functions
- OBW Configuration Functions
- SEM Configuration Functions
- PVT Configuration Functions
- SlotPhase Configuration Functions
- SlotPower Configuration Functions
- Set And Get Attribute Functions
- ModAcc Fetch Functions
- ACP Fetch Functions
- CHP Fetch Functions
- OBW Fetch Functions
- SEM Fetch Functions
- PVT Fetch Functions
- SlotPhase Fetch Functions
- SlotPower Fetch Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Component Carrier Attributes
- ModAcc Attributes
- ACP Attributes
- CHP Attributes
- OBW Attributes
- SEM Attributes
- PVT Attributes
- SlotPhase Attributes
- SlotPower Attributes
- Advanced Attributes
NI-RFmx SpecAn
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Read Functions
- Fetch Functions
- Utility Functions
- Marker Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- ACP Attributes
- Cdf Attributes
- CHP Attributes
- Fcnt Attributes
- Harm Attributes
- OBW Attributes
- SEM Attributes
- Spectrum Attributes
- Spur Attributes
- TXP Attributes
- AMPM Attributes
- Dpd Attributes
- IQ Attributes
- IM Attributes
- NF Attributes
- Phasenoise Attributes
- PAVT Attributes
- Advanced Attributes
NI-RFmx WLAN
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Fetch DSSS ModAcc Functions
- Fetch OFDM ModAcc Functions
- Fetch SEM Functions
- Fetch TXP Functions
- Fetch PowerRamp Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- OFDM Attributes
- Auto Detect Signal Attributes
- DSSS ModAcc Attributes
- OFDM ModAcc Attributes
- SEM Attributes
- TXP Attributes
- PowerRamp Attributes
- Advanced Attributes
NI-RFSA
- General Functions
- Configuration Functions
- Acquisition Functions
- Utility Functions
- Calibration Functions
- General Attributes
- Vertical Attributes
- Signal Path Attributes
- Acquisition Attributes
- Acquisition Attributes
- Triggers Attributes
- Events Attributes
- Device Characteristics Attributes
- Peer To Peer Streaming Attributes
- Configuration List Attributes
- Inherent IVI Properties Attributes
- De-embedding Attributes
- Self Calibration Attributes
- Factory Calibration Attributes
- External Alignment Attributes
- Device Specific Attributes
NI-RFSG
- General Functions
- Generation Configuration
- Utility Functions
- Calibration Functions
- Arb Attributes
- Clock Attributes
- Configuration List Attributes
- De-embedding Attributes
- Device Characteristics Attributes
- Device Specific Attributes
- Events Attributes
- External Calibration Attributes
- Inherent IVI Attributes Attributes
- IQ Impairment Attributes
- Load Configurations Attributes
- Modulation Attributes
- Obsolete Attributes
- Peer To Peer Attributes
- RF Attributes
- Self Calibration Attributes
- Triggers Attributes
NI-SCOPE
- Setup Functions
- Configure Functions
- Attribute Functions
- Acquisition Functions
- Measurement Functions
- Calibrate Functions
- Utility Funcitons
- Error Handling Functions
- IVI Compliance Or Obsolete Functions
- Vertical Attributes
- Horizontal Attributes
- Trigger Attributes
- Clocking Attributes
- Synchronization Attributes
- Acquisition Attributes
- Waveform Measurements Attributes
- Onboard Signal Processing Attributes
- Peer To Peer Streaming Attributes
- Device Attributes
- IVI Or Obsolete Attributes
- Instrument Capabilities Attributes
- If Digitizer Attributes
NI-XNET
- gRPC API differences from C APIs
- General Functions
- Cluster Properties
- Database Properties
- Device Properties
- ECU Properties
- Frame Properties
- Interface Properties
- LIN Schedule Entry Properties
- LIN Schedule Properties
- PDU Properties
- Session Ethernet Properties
- Session Frame Properties
- Session Interface Properties
- Session Properties
- Session SAE J1939 Properties
- Signal Properties
- Subframe Properties
- System Properties
- IP-Stack Functions
- Socket Options
- Socket Functions