-
Notifications
You must be signed in to change notification settings - Fork 50
NI RFmx SpecAn SEM Configuration Functions
- RFmxSpecAn_SEMCfgNumberOfCarriers
- RFmxSpecAn_SEMCfgCarrierEnabled
- RFmxSpecAn_SEMCfgCarrierFrequency
- RFmxSpecAn_SEMCfgCarrierChannelBandwidth
- RFmxSpecAn_SEMCfgCarrierIntegrationBandwidth
- RFmxSpecAn_SEMCfgCarrierRBWFilter
- RFmxSpecAn_SEMCfgCarrierRRCFilter
- RFmxSpecAn_SEMCfgNumberOfOffsets
- RFmxSpecAn_SEMCfgOffsetFrequency
- RFmxSpecAn_SEMCfgOffsetRBWFilter
- RFmxSpecAn_SEMCfgOffsetBandwidthIntegral
- RFmxSpecAn_SEMCfgOffsetRelativeAttenuation
- RFmxSpecAn_SEMCfgOffsetLimitFailMask
- RFmxSpecAn_SEMCfgOffsetAbsoluteLimit
- RFmxSpecAn_SEMCfgOffsetFrequencyDefinition
- RFmxSpecAn_SEMCfgOffsetRelativeLimit
- RFmxSpecAn_SEMCfgPowerUnits
- RFmxSpecAn_SEMCfgReferenceType
- RFmxSpecAn_SEMCfgSweepTime
- RFmxSpecAn_SEMCfgAveraging
- RFmxSpecAn_SEMCfgFFT
- Array Apis
int32 __stdcall RFmxSpecAn_SEMCfgNumberOfCarriers (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 numberOfCarriers);
Configures the number of carriers for the spectral emission mask (SEM) measurement.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
numberOfCarriers | int32 | Specifies the number of carriers. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SEMCfgCarrierEnabled (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 carrierEnabled);
Configures whether to consider the carrier power as part of total carrier power measurement.
Use "carrier<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name and carrier number. If you do not specify the signal name, the default signal instance is used. Example: "carrier0" "signal::sig1/carrier0" You can use the RFmxSpecAn_BuildCarrierString2) function to build the selector string). |
carrierEnabled | int32 | Specifies whether to consider the carrier power as part of total carrier power measurement. |
RFMXSPECAN_VAL_SEM_ENABLED_FALSE (0) | The carrier power is not considered as part of the total carrier power. |
---|---|
RFMXSPECAN_VAL_SEM_ENABLED_TRUE (1) | The carrier power is considered as part of the total carrier power. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SEMCfgCarrierFrequency (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 carrierFrequency);
Configures the center frequency, in hertz (Hz), of the carrier, relative to the RF center frequency.
Use "carrier<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name and carrier number. If you do not specify the signal name, the default signal instance is used. Example: "carrier0" "signal::sig1/carrier0" You can use the RFmxSpecAn_BuildCarrierString2) function to build the selector string). |
carrierFrequency | float64 | Specifies the center frequency, in hertz (Hz), of the carrier, relative to the RF center frequency. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SEMCfgCarrierFrequency (niRFmxInstrHandle instrumentHandle, char selectorString[],float64 carrierChannelBandwidth);
Configures the channel bandwidth of the carrier.
Use "carrier<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name and carrier number. If you do not specify the signal name, the default signal instance is used. Example: "carrier0" "signal::sig1/carrier0" You can use the RFmxSpecAn_BuildCarrierString2) function to build the selector string). |
carrierChannelBandwidth | float64 | Specifies the channel bandwidth of the carrier. It is used to calculate the values of the RFMXSPECAN_ATTR_SEM_OFFSET_START_FREQUENCY) and RFMXSPECAN_ATTR_SEM_OFFSET_STOP_FREQUENCY) attributes when you set the RFMXSPECAN_ATTR_SEM_OFFSET_FREQUENCY_DEFINITION) attribute to RFMXSPECAN_VAL_SEM_CARRIER_EDGE_TO_MEASUREMENT_BANDWIDTH_CENTER or RFMXSPECAN_VAL_SEM_CARRIER_EDGE_TO_MEASUREMENT_BANDWIDTH_EDGE. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SEMCfgCarrierIntegrationBandwidth (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 integrationBandwidth);
Configures the frequency range, in hertz (Hz), over which the measurement integrates the carrier power.
Use "carrier<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name and carrier number. If you do not specify the signal name, the default signal instance is used. Example: "carrier0" "signal::sig1/carrier0" You can use the RFmxSpecAn_BuildCarrierString2) function to build the selector string). |
integrationBandwidth | float64 | Specifies the frequency range, in Hz, over which the measurement integrates the carrier power. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SEMCfgCarrierRBWFilter (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 RBWAuto, float64 RBW, int32 RBWFilterType);
Configures the resolution bandwidth (RBW) filter of the carrier signal.
Use "carrier<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name and carrier number. If you do not specify the signal name, the default signal instance is used. Example: "carrier0" "signal::sig1/carrier0" You can use the RFmxSpecAn_BuildCarrierString2) function to build the selector string). |
RBWAuto | int32 | Specifies whether the measurement computes the RBW. Refer to the RBW and Sweep Time section in the SEM) topic for more information about RBW and sweep time. |
RFMXSPECAN_VAL_SEM_RBW_AUTO_FALSE (0) | The measurement uses the RBW that you specify in the RBW parameter. |
---|---|
RFMXSPECAN_VAL_SEM_RBW_AUTO_TRUE (1) | The measurement computes the RBW. |
RBW | float64 | Specifies the bandwidth, in hertz (Hz), of the RBW filter used to sweep the acquired carrier signal, when you set the RBWAuto parameter to RFMXSPECAN_VAL_SEM_RBW_AUTO_FALSE. |
RBWFilterType | int32 | Specifies the shape of the digital RBW filter. |
RFMXSPECAN_VAL_SEM_RBW_FILTER_TYPE_FFT_BASED (0) | No RBW filtering is performed. |
---|---|
RFMXSPECAN_VAL_SEM_RBW_FILTER_TYPE_GAUSSIAN (1) | An RBW filter with a Gaussian response is applied. |
RFMXSPECAN_VAL_SEM_RBW_FILTER_TYPE_FLAT (2) | An RBW filter with a flat response is applied. |
RFMXSPECAN_VAL_SEM_RBW_FILTER_TYPE_SYNCH_TUNED_4 (3) | An RBW filter with a 4-pole synchronously-tuned response is applied. |
RFMXSPECAN_VAL_SEM_RBW_FILTER_TYPE_SYNCH_TUNED_5 (4) | An RBW filter with a 5-pole synchronously-tuned response is applied. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SEMCfgCarrierRRCFilter (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 RRCFilterEnabled, float64 RRCAlpha);
Configures the root raised cosine (RRC) channel filter to apply on the acquired carrier channel before measuring the channel power. RRC alpha is the filter roll off.
Use "carrier<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name and carrier number. If you do not specify the signal name, the default signal instance is used. Example: "carrier0" "signal::sig1/carrier0" You can use the RFmxSpecAn_BuildCarrierString2) function to build the selector string). |
RRCFilterEnabled | int32 | Specifies whether to apply the root-raised-cosine (RRC) filter on the acquired carrier channel before measuring the carrier channel power. |
RFMXSPECAN_VAL_ACP_RRC_FILTER_ENABLED_FALSE (0) | The channel power of the acquired carrier channel is measured directly. |
---|---|
RFMXSPECAN_VAL_ACP_RRC_FILTER_ENABLED_TRUE (1) | The RRC filter is applied on the acquired carrier channel before measuring the carrier channel power. |
RRCAlpha | float64 | Specifies the roll-off factor for the root-raised-cosine (RRC) filter. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SEMCfgNumberOfOffsets (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 numberOfOffsets);
Configures the number of offset segments for the spectral emission mask (SEM) measurement.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
numberOfOffsets | int32 | Specifies the number of offset segments. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SEMCfgOffsetFrequency (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 offsetStartFrequency, float64 offsetStopFrequency, int32 offsetEnabled, int32 offsetSideband);
Configures the offset frequency start and stop values and specifies whether the offset segment is present on one side, or on both sides of the carriers.
Use "offset<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name and offset number. If you do not specify the signal name, the default signal instance is used. Example: "offset0" "signal::sig1/offset0" You can use the RFmxSpecAn_BuildOffsetString2) function to build the selector string). |
offsetStartFrequency | float64 | Specifies the start frequency, in hertz (Hz), of the offset segment relative to the closest configured carrier channel bandwidth center or carrier channel bandwidth edge based on the RFMXSPECAN_ATTR_SEM_OFFSET_FREQUENCY_DEFINITION) attribute. |
offsetStopFrequency | float64 | Specifies the stop frequency, in hertz (Hz), of the offset segment relative to the closest configured carrier channel bandwidth center or carrier channel bandwidth edge based on the RFMXSPECAN_RANGE_TABLE_SEM_OFFSET_FREQUENCY_DEFINITION attribute. |
offsetEnabled | int32 | Specifies whether to enable the offset segment for the SEM measurement. |
RFMXSPECAN_VAL_SEM_OFFSET_ENABLED_FALSE (0) | Disables the offset segment for the SEM measurement. |
---|---|
RFMXSPECAN_VAL_SEM_OFFSET_ENABLED_TRUE (1) | Enables the offset segment for the SEM measurement. |
offsetSideband | int32 | Specifies whether the offset segment is present on one side, or on both sides of the carriers. |
RFMXSPECAN_VAL_SEM_OFFSET_SIDEBAND_NEGATIVE (0) | Configures a lower offset segment to the left of the leftmost carrier. |
---|---|
RFMXSPECAN_VAL_SEM_OFFSET_SIDEBAND_POSITIVE (1) | Configures a lower offset segment to the left of the rightmost carrier. |
RFMXSPECAN_VAL_SEM_OFFSET_SIDEBAND_BOTH (2) | Configures both negative and positive offset segments. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SEMCfgOffsetRBWFilter (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 RBWAuto, float64 RBW, int32 RBWFilterType);
Configures the resolution bandwidth (RBW) filter of the offset segment.
Use "offset<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name and offset number. If you do not specify the signal name, the default signal instance is used. Example: "offset0" "signal::sig1/offset0" You can use the RFmxSpecAn_BuildOffsetString2) function to build the selector string). |
RBWAuto | int32 | Specifies whether the measurement computes the RBW. Refer to the RBW and Sweep Time section in the SEM) topic for more information about RBW and sweep time. |
RFMXSPECAN_VAL_SEM_RBW_AUTO_FALSE (0) | The measurement uses the RBW that you specify in the RBW parameter. |
---|---|
RFMXSPECAN_VAL_SEM_RBW_AUTO_TRUE (1) | The measurement computes the RBW. |
RBW | float64 | Specifies the bandwidth, in hertz (Hz), of the RBW filter used to sweep the acquired offset segment, when you set the RBWAuto parameter to RFMXSPECAN_VAL_SEM_RBW_AUTO_FALSE. |
RBWFilterType | int32 | Specifies the shape of the digital RBW filter. |
RFMXSPECAN_VAL_SEM_RBW_FILTER_TYPE_FFT_BASED (0) | No RBW filtering is performed. |
---|---|
RFMXSPECAN_VAL_SEM_RBW_FILTER_TYPE_GAUSSIAN (1) | An RBW filter with a Gaussian response is applied. |
RFMXSPECAN_VAL_SEM_RBW_FILTER_TYPE_FLAT (2) | An RBW filter with a flat response is applied. |
RFMXSPECAN_VAL_SEM_RBW_FILTER_TYPE_SYNCH_TUNED_4 (3) | An RBW filter with a 4-pole synchronously-tuned response is applied. |
RFMXSPECAN_VAL_SEM_RBW_FILTER_TYPE_SYNCH_TUNED_5 (4) | An RBW filter with a 5-pole synchronously-tuned response is applied. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SEMCfgOffsetBandwidthIntegral (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 bandwidthIntegral);
Configures the resolution of the spectrum to compare with spectral mask limits as an integer multiple of the resolution bandwidth (RBW).
Use "offset<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name and offset number. If you do not specify the signal name, the default signal instance is used. Example: "offset0" "signal::sig1/offset0" You can use the RFmxSpecAn_BuildOffsetString2) function to build the selector string). |
bandwidthIntegral | int32 | Specifies the resolution of the spectrum to compare with spectral mask limits as an integer multiple of the RBW. If you set this parameter to a value greater than 1, the measurement acquires the spectrum with a narrow resolution and then processes it digitally to get a wider resolution that is equal to the product of the bandwidth integral and the RBW. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SEMCfgOffsetRelativeAttenuation (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 relativeAttenuation);
Configures the attenuation, in dB, relative to the external attenuation.
Use "offset<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name and offset number. If you do not specify the signal name, the default signal instance is used. Example: "offset0" "signal::sig1/offset0" You can use the RFmxSpecAn_BuildOffsetString2) function to build the selector string). |
relativeAttenuation | float64 | Specifies the attenuation, in dB, relative to the external attenuation. Use this parameter to compensate for variations in external attenuation when the offset channels are spread wide in frequency. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SEMCfgOffsetLimitFailMask (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 limitFailMask);
Specifies the criteria to determine the measurement fail status.
Use "offset<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name and offset number. If you do not specify the signal name, the default signal instance is used. Example: "offset0" "signal::sig1/offset0" You can use the RFmxSpecAn_BuildOffsetString2) function to build the selector string). |
limitFailMask | int32 | Specifies the criteria to determine the measurement fail status. |
RFMXSPECAN_VAL_SEM_OFFSET_LIMIT_FAIL_MASK_ABSOLUTE_AND_RELATIVE (0) | The measurement fails if the power in the segment exceeds both the absolute and relative masks. |
---|---|
RFMXSPECAN_VAL_SEM_OFFSET_LIMIT_FAIL_MASK_ABSOLUTE_OR_RELATIVE (1) | The measurement fails if the power in the segment exceeds either the absolute or relative mask. |
RFMXSPECAN_VAL_SEM_OFFSET_LIMIT_FAIL_MASK_ABSOLUTE (2) | The measurement fails if the power in the segment exceeds the absolute mask. |
RFMXSPECAN_VAL_SEM_OFFSET_LIMIT_FAIL_MASK_RELATIVE (3) | The measurement fails if the power in the segment exceeds the relative mask. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SEMCfgOffsetAbsoluteLimit (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 absoluteLimitMode, float64 absoluteLimitStart, float64 absoluteLimitStop);
Configures the absolute limit mode and specifies the absolute power limits corresponding to the beginning and end of the offset segment.
Use "offset<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name and offset number. If you do not specify the signal name, the default signal instance is used. Example: "offset0" "signal::sig1/offset0" You can use the RFmxSpecAn_BuildOffsetString2) function to build the selector string). |
absoluteLimitMode | int32 | Specifies whether the absolute limit mask is a flat line or a line with a slope. |
RFMXSPECAN_VAL_SEM_OFFSET_ABSOLUTE_LIMIT_MODE_MANUAL (0) | The line specified by the RFMXSPECAN_ATTR_SEM_OFFSET_ABSOLUTE_LIMIT_START) and RFMXSPECAN_ATTR_SEM_OFFSET_ABSOLUTE_LIMIT_STOP) attribute values as the two ends is considered as the mask. |
---|---|
RFMXSPECAN_VAL_SEM_OFFSET_ABSOLUTE_LIMIT_MODE_COUPLE (1) | The two ends of the line are coupled to the value of the RFMXSPECAN_ATTR_SEM_OFFSET_ABSOLUTE_LIMIT_START attribute. |
absoluteLimitStart | float64 | Specifies the absolute power limit, in dBm, corresponding to the beginning of the offset segment. The value of this parameter is also set as the stop limit for the offset segment when you set the absoluteLimitMode parameter to RFMXSPECAN_VAL_SEM_OFFSET_ABSOLUTE_LIMIT_MODE_COUPLE. |
absoluteLimitStop | float64 | Specifies the absolute power limit, in dBm, corresponding to the end of the offset segment. This parameter is ignored when you set the absoluteLimitMode parameter to RFMXSPECAN_VAL_SEM_OFFSET_ABSOLUTE_LIMIT_MODE_COUPLE. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SEMCfgOffsetFrequencyDefinition (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 offsetFrequencyDefinition);
Configures the offset frequency definition for the SEM measurement.
Use "offset<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name and offset number. If you do not specify the signal name, the default signal instance is used. Example: "offset0" "signal::sig1/offset0" You can use the RFmxSpecAn_BuildOffsetString2) function to build the selector string). |
offsetFrequencyDefinition | int32 | Specifies the definition of the start frequency and stop frequency of the offset segments from the nearest carrier channels. |
RFMXSPECAN_VAL_SEM_CARRIER_CENTER_TO_MEASUREMENT_BANDWIDTH_CENTER (0) | The start frequency and stop frequency are defined from the center of the closest carrier channel bandwidth to the center of the offset segment measurement bandwidth. Measurement Bandwidth = Resolution Bandwidth * Bandwidth Integral. |
---|---|
RFMXSPECAN_VAL_SEM_CARRIER_CENTER_TO_MEASUREMENT_BANDWIDTH_EDGE (1) | The start frequency and stop frequency are defined from the center of the closest carrier channel bandwidth to the nearest edge of the offset segment measurement bandwidth. |
RFMXSPECAN_VAL_SEM_CARRIER_EDGE_TO_MEASUREMENT_BANDWIDTH_CENTER (2) | The start frequency and stop frequency are defined from the nearest edge of the closest carrier channel bandwidth to the center of the nearest offset segment measurement bandwidth. |
RFMXSPECAN_VAL_SEM_CARRIER_EDGE_TO_MEASUREMENT_BANDWIDTH_EDGE (3) | The start frequency and stop frequency are defined from the nearest edge of the closest carrier channel bandwidth to the edge of the nearest offset segment measurement bandwidth. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SEMCfgOffsetRelativeLimit (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 relativeLimitMode, float64 relativeLimitStart, float64 relativeLimitStop);
Configures the relative limit mode and specifies the relative power limits corresponding to the beginning and end of the offset segment.
Use "offset<n>" as the selector string to configure this function.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name and offset number. If you do not specify the signal name, the default signal instance is used. Example: "offset0" "signal::sig1/offset0" You can use the RFmxSpecAn_BuildOffsetString2) function to build the selector string). |
relativeLimitMode | int32 | Specifies whether the relative limit mask is a flat line or a line with a slope. |
RFMXSPECAN_VAL_SEM_OFFSET_RELATIVE_LIMIT_MODE_MANUAL (0) | The line specified by the RFMXSPECAN_ATTR_SEM_OFFSET_RELATIVE_LIMIT_START) and RFMXSPECAN_ATTR_SEM_OFFSET_RELATIVE_LIMIT_STOP) attribute values as the two ends is considered as the mask. |
---|---|
RFMXSPECAN_VAL_SEM_OFFSET_RELATIVE_LIMIT_MODE_COUPLE (1) | The two ends of the line are coupled to the value of the RFMXSPECAN_ATTR_SEM_OFFSET_RELATIVE_LIMIT_START attribute. |
relativeLimitStart | float64 | Specifies the relative power limit, in dB, corresponding to the beginning of the offset segment. The value of this parameter is also set as the stop limit for the offset segment when you set the relativeLimitMode parameter to RFMXSPECAN_VAL_SEM_RELATIVE_LIMIT_MODE_COUPLE. |
relativeLimitStop | float64 | Specifies the relative power limit, in dB, corresponding to the end of the offset segment. This parameter is ignored if you set the relativeLimitMode parameter to RFMXSPECAN_VAL_SEM_RELATIVE_LIMIT_MODE_COUPLE. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SEMCfgPowerUnits (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 powerUnits);
Configures the units for the absolute power.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
powerUnits | int32 | Specifies the units for the absolute power. |
RFMXSPECAN_VAL_SEM_POWER_UNITS_DBM (0) | The absolute powers are reported in dBm. |
---|---|
RFMXSPECAN_VAL_SEM_POWER_UNITS_DBM_PER_HZ (1) | The absolute powers are reported in dBm/Hz. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SEMCfgReferenceType (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 referenceType);
Configures whether the power reference is the integrated power or the peak power in the closest carrier channel.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
referenceType | int32 | Specifies whether the power reference is the integrated power or the peak power in the closest carrier channel. The leftmost carrier is the carrier closest to all the lower (negative) offset segments. The rightmost carrier offset is the carrier closest to all the upper (positive) offset segments. |
RFMXSPECAN_VAL_SEM_REFERENCE_TYPE_INTEGRATION (0) | The power reference is the integrated power of the closest carrier. |
---|---|
RFMXSPECAN_VAL_SEM_REFERENCE_TYPE_PEAK (1) | The power reference is the peak power of the closest carrier. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SEMCfgSweepTime (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 sweepTimeAuto, float64 sweepTimeInterval);
Configures the sweep time.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
sweepTimeAuto | int32 | Specifies whether the measurement computes the sweep time. |
RFMXSPECAN_VAL_SEM_SWEEP_TIME_AUTO_FALSE (0) | The measurement uses the sweep time that you specify in the sweepTimeInterval parameter. |
---|---|
RFMXSPECAN_VAL_SEM_SWEEP_TIME_AUTO_TRUE (1) | The measurement calculates the sweep time based on the value of the RFMXSPECAN_ATTR_SEM_OFFSET_RBW_FILTER_BANDWIDTH) and RFMXSPECAN_ATTR_SEM_CARRIER_RBW_FILTER_BANDWIDTH) attributes. |
sweepTimeInterval | float64 | Specifies the sweep time, in seconds, when you set the sweepTimeAuto parameter to RFMXSPECAN_VAL_SEM_SWEEP_TIME_AUTO_FALSE. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SEMCfgAveraging (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 averagingEnabled, int32 averagingCount, int32 averagingType);
Configures averaging for the spectral emission mask (SEM) measurement.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
averagingEnabled | int32 | Specifies whether to enable averaging for the measurement. |
RFMXSPECAN_VAL_SEM_AVERAGING_ENABLED_FALSE (0) | The measurement is performed on a single acquisition. |
---|---|
RFMXSPECAN_VAL_SEM_AVERAGING_ENABLED_TRUE (1) | The measurement uses the averagingCount parameter to calculate the number of acquisitions over which the measurement is averaged. |
averagingCount | int32 | Specifies the number of acquisitions used for averaging when you set the averagingEnabled parameter to RFMXSPECAN_VAL_SEM_AVERAGING_ENABLED_TRUE. |
averagingType | int32 | Specifies the averaging type for averaging multiple spectrum acquisitions. The averaged spectrum is used for the measurement. Refer to the Averaging section of the Spectrum) topic for more information about averaging types. |
RFMXSPECAN_VAL_SEM_AVERAGING_TYPE_RMS (0) | The power spectrum is linearly averaged. RMS averaging reduces signal fluctuations but not the noise floor. |
---|---|
RFMXSPECAN_VAL_SEM_AVERAGING_TYPE_LOG (1) | The power spectrum is averaged in a logarithm scale. |
RFMXSPECAN_VAL_SEM_AVERAGING_TYPE_SCALAR (2) | The square root of the power spectrum is averaged. |
RFMXSPECAN_VAL_SEM_AVERAGING_TYPE_MAXIMUM (3) | The peak power in the spectrum at each frequency bin is retained from one acquisition to the next. |
RFMXSPECAN_VAL_SEM_AVERAGING_TYPE_MINIMUM (4) | The least power in the spectrum at each frequency bin is retained from one acquisition to the next. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SEMCfgFFT (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 FFTWindow, float64 FFTPadding);
Configures the FFT window and padding to obtain a spectrum for the spectral emission mask (SEM) measurement.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
FFTWindow | int32 | Specifies the FFT window type to use to reduce spectral leakage. Refer to the Window and FFT section of the Spectrum) topic for more information about FFT window types. |
RFMXSPECAN_VAL_SEM_FFT_WINDOW_NONE (0) | Analyzes transients for which duration is shorter than the window length. You can also use this window type to separate two tones with frequencies close to each other but with almost equal amplitudes. |
---|---|
RFMXSPECAN_VAL_SEM_FFT_WINDOW_FLAT_TOP (1) | Measures single-tone amplitudes accurately. |
RFMXSPECAN_VAL_SEM_FFT_WINDOW_HANNING (2) | Analyzes transients for which duration is longer than the window length. You can also use this window type to provide better frequency resolution for noise measurements. |
RFMXSPECAN_VAL_SEM_FFT_WINDOW_HAMMING (3) | Analyzes closely-spaced sine waves. |
RFMXSPECAN_VAL_SEM_FFT_WINDOW_GAUSSIAN (4) | Provides a good balance of spectral leakage, frequency resolution, and amplitude attenuation. Hence, this windowing is useful for time-frequency analysis. |
RFMXSPECAN_VAL_SEM_FFT_WINDOW_BLACKMAN (5) | Analyzes single tone because it has a low maximum side lobe level and a high side lobe roll-off rate. |
RFMXSPECAN_VAL_SEM_FFT_WINDOW_BLACKMAN_HARRIS (6) | Useful as a good general purpose window, having side lobe rejection >90dB and having a moderately wide main lobe. |
RFMXSPECAN_VAL_SEM_FFT_WINDOW_KAISER_BESSEL (7) | Separates two tones with frequencies close to each other but with widely-differing amplitudes. |
FFTPadding | float64 | Specifies the factor by which the time-domain waveform is zero-padded before FFT. The FFT size is given by the following formula: waveform size * padding. This parameter is used only when the acquisition span is less than the device instantaneous bandwidth of the device. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SEMCfgOffsetFrequencyArray (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 offsetStartFrequency[], float64 offsetStopFrequency[], int32 offsetEnabled[], int32 offsetSideband[], int32 numberOfElements);
Configures the offset frequency start and stop values and specifies whether the offset segment is present on one side, or on both sides of the carriers.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
offsetStartFrequency | float64[] | Specifies the array of start frequencies, in hertz (Hz), of each offset segment relative to the closest configured carrier channel bandwidth center or carrier channel bandwidth edge based on the RFMXSPECAN_ATTR_SEM_OFFSET_FREQUENCY_DEFINITION) attribute. Specify NULL if you do not want to set a value for this array. |
offsetStopFrequency | float64[] | Specifies the array of stop frequencies, in hertz (Hz), of each offset segment relative to the closest configured carrier channel bandwidth center or carrier channel bandwidth edge based on the RFMXSPECAN_RANGE_TABLE_SEM_OFFSET_FREQUENCY_DEFINITION attribute. Specify NULL if you do not want to set a value for this array. |
offsetEnabled | int32[] | Specifies whether to enable the offset segment for the SEM measurement. Specify NULL if you do not want to set a value for this array. |
RFMXSPECAN_VAL_SEM_OFFSET_ENABLED_FALSE (0) | Disables the offset segment for the SEM measurement. |
---|---|
RFMXSPECAN_VAL_SEM_OFFSET_ENABLED_TRUE (1) | Enables the offset segment for the SEM measurement. |
offsetSideband | int32[] | Specifies whether the offset segment is present on one side, or on both sides of the carriers. Specify NULL if you do not want to set a value for this array. |
RFMXSPECAN_VAL_SEM_OFFSET_SIDEBAND_NEGATIVE (0) | Configures a lower offset segment to the left of the leftmost carrier. |
---|---|
RFMXSPECAN_VAL_SEM_OFFSET_SIDEBAND_POSITIVE (1) | Configures an upper offset segment to the right of the rightmost carrier. |
RFMXSPECAN_VAL_SEM_OFFSET_SIDEBAND_BOTH (2) | Configures both negative and positive offset segments. |
numberOfElements | int32 | Specifies the number of elements in each array. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SEMCfgOffsetRBWFilterArray (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 RBWAuto[], float64 RBW[], int32 RBWFilterType[], int32 numberOfElements);
Configures the resolution bandwidth (RBW) filter of the offset segment.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
RBWAuto | int32[] | Specifies the array of RBWAuto which determines whether the measurement computes the RBW. Refer to the RBW and Sweep Time section in the SEM) topic for more information about RBW and sweep time. Specify NULL if you do not want to set a value for this array. |
RFMXSPECAN_VAL_SEM_RBW_AUTO_FALSE (0) | The measurement uses the RBW that you specify in the RBW parameter. |
---|---|
RFMXSPECAN_VAL_SEM_RBW_AUTO_TRUE (1) | The measurement computes the RBW. |
RBW | float64[] | Specifies the array of bandwidths, in hertz (Hz), of the RBW filter used to sweep the acquired offset segment, when you set the RBWAuto parameter to RFMXSPECAN_VAL_SEM_RBW_AUTO_FALSE. Specify NULL if you do not want to set a value for this array. |
RBWFilterType | int32[] | Specifies the array of shapes of the digital RBW filter. Specify NULL if you do not want to set a value for this array. |
RFMXSPECAN_VAL_SEM_RBW_FILTER_TYPE_FFTBASED (0) | No RBW filtering is performed. |
---|---|
RFMXSPECAN_VAL_SEM_RBW_FILTER_TYPE_GAUSSIAN (1) | An RBW filter with a Gaussian response is applied. |
RFMXSPECAN_VAL_SEM_RBW_FILTER_TYPE_FLAT (2) | An RBW filter with a flat response is applied. |
RFMXSPECAN_VAL_SEM_RBW_FILTER_TYPE_SYNCHTUNED4 (3) | An RBW filter with a 4-pole synchronously-tuned response is applied. |
RFMXSPECAN_VAL_SEM_RBW_FILTER_TYPE_SYNCHTUNED5 (4) | An RBW filter with a 5-pole synchronously-tuned response is applied. |
numberOfElements | int32 | Specifies the number of elements in each array. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SEMCfgOffsetRelativeAttenuationArray (niRFmxInstrHandle instrumentHandle, char selectorString[], float64 relativeAttenuation[], int32 numberOfElements);
Configures the attenuation, in dB, relative to the external attenuation.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
relativeAttenuation | float64[] | Specifies an array of attenuation values, in dB, relative to the external attenuation. Use this parameter to compensate for the variations in external attenuation when offset channels are spread wide in frequency. Specify NULL if you do not want to set a value for this array. |
numberOfElements | int32 | Specifies the number of elements in each array. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SEMCfgOffsetAbsoluteLimitArray (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 absoluteLimitMode[], float64 absoluteLimitStart[], float64 absoluteLimitStop[], int32 numberOfElements);
Configures the absolute limit mode and specifies the absolute power limits corresponding to the beginning and end of the offset segment.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
absoluteLimitMode | int32[] | Specifies whether the absolute limit mask is a flat line or a line with a slope. Specify NULL if you do not want to set a value for this array. |
RFMXSPECAN_VAL_SEM_OFFSET_ABSOLUTE_LIMIT_MODE_MANUAL (0) | The line specified by the RFMXSPECAN_ATTR_SEM_OFFSET_ABSOLUTE_LIMIT_START) and RFMXSPECAN_ATTR_SEM_OFFSET_ABSOLUTE_LIMIT_STOP) attribute values as the two ends is considered as the mask. |
---|---|
RFMXSPECAN_VAL_SEM_OFFSET_ABSOLUTE_LIMIT_MODE_COUPLE (1) | The two ends of the line are coupled to the value of the RFMXSPECAN_ATTR_SEM_OFFSET_ABSOLUTE_LIMIT_START attribute. |
absoluteLimitStart | float64[] | Specifies the absolute power limit, in dBm, corresponding to the beginning of the offset segment. The value of this parameter is also set as the stop limit for the offset segment when you set the absoluteLimitMode parameter to RFMXSPECAN_VAL_SEM_OFFSET_ABSOLUTE_LIMIT_MODE_COUPLE. Specify NULL if you do not want to set a value for this array. |
absoluteLimitStop | float64[] | Specifies the absolute power limit, in dBm, corresponding to the end of the offset segment. This parameter is ignored when you set the absoluteLimitMode parameter to RFMXSPECAN_VAL_SEM_OFFSET_ABSOLUTE_LIMIT_MODE_COUPLE. Specify NULL if you do not want to set a value for this array. |
numberOfElements | int32 | Specifies the number of elements in each array. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
int32 __stdcall RFmxSpecAn_SEMCfgOffsetRelativeLimitArray (niRFmxInstrHandle instrumentHandle, char selectorString[], int32 relativeLimitMode[], float64 relativeLimitStart[], float64 relativeLimitStop[], int32 numberOfElements);
Configures the relative limit mode and specifies the relative power limits corresponding to the beginning and end of the offset segment.
Input | ||
---|---|---|
Name | Type | Description |
instrumentHandle | niRFmxInstrHandle | Identifies the RFmx session. You can obtain this parameter from the RFmxSpecAn_Initialize) function. |
selectorString | char[] | Comprises the signal name. If you do not specify the signal name, the default signal instance is used. Example: "" "signal::sig1" You can use the RFmxSpecAn_BuildSignalString) function to build the selector string). |
relativeLimitMode | int32[] | Specifies whether the relative limit mask is a flat line or a line with a slope. Specify NULL if you do not want to set a value for this array. |
RFMXSPECAN_VAL_SEM_RELATIVE_LIMIT_MODE_MANUAL (0) | The line specified by the RFMXSPECAN_ATTR_SEM_OFFSET_RELATIVE_LIMIT_START) and RFMXSPECAN_ATTR_SEM_OFFSET_RELATIVE_LIMIT_STOP) attribute values as the two ends is considered as the mask. |
---|---|
RFMXSPECAN_VAL_SEM_RELATIVE_LIMIT_MODE_COUPLE (1) | The two ends of the line are coupled to the value of the RFMXSPECAN_ATTR_SEM_OFFSET_RELATIVE_LIMIT_START attribute. |
relativeLimitStart | float64[] | Specifies the array of relative power limits, in dB, corresponding to the beginning of the offset segment. The value of this parameter is also set as the stop limit for the offset segment when you set the relativeLimitMode parameter to RFMXSPECAN_VAL_SEM_RELATIVE_LIMIT_MODE_COUPLE. Specify NULL if you do not want to set a value for this array. |
relativeLimitStop | float64[] | Specifies the array of relative power limits, in dB, corresponding to the end of the offset segment. This parameter is ignored if you set the relativeLimitMode parameter to RFMXSPECAN_VAL_SEM_RELATIVE_LIMIT_MODE_COUPLE. Specify NULL if you do not want to set a value for this array. |
numberOfElements | int32 | Specifies the number of elements in each array. |
Name | Type | Description |
---|---|---|
status | int32 | Returns the status code of this operation. The status code either indicates success or describes an error or warning condition. Examine the status code from each call to an RFmx function to determine if an error has occurred. To obtain a text description of the status code and additional information about the error condition, call the RFmxSpecAn_GetError) function. The general meaning of the status code is as follows: |
Value | Meaning |
---|---|
0 | Success |
Positive Values | Warnings |
Negative Values | Errors |
Creating and Setting Up a gRPC Server
Session Utilities API Reference
gRPC API Differences From C API
Sharing Driver Sessions Between Clients
C API Docs
NI-DAQmx
- gRPC API Differences From C API
- Task Configuration And Control
- Channel Configuration And Creation
- Timing
- Triggering
- Read Functions
- Write Functions
- Export Hardware Signals
- Scale Configuration
- Internal Buffer Configuration
- Advanced Functions
- System Configuration
- Error Handling
- Buffer Attributes
- Calibration Info Attributes
- Channel Attributes
- Device Attributes
- Export Signal Attributes
- Persisted Channel Attributes
- Persisted Scale Attributes
- Persisted Task Attributes
- Physical Channel Attributes
- Read Attributes
- Scale Attributes
- System Attributes
- Task Attributes
- Timing Attributes
- Trigger Attributes
- Watchdog Attributes
- Write Attributes
NI-DCPOWER
- Setup Functions
- Configure Functions
- Measurement Functions
- Control Functions
- Trigger And Event
- Attribute Functions
- Query Functions
- Calibration Functions
- Utility Functions
- Supported Device
- Source Attributes
- Transient Attributes
- Voltage Attributes
- Current Attributes
- Pulse Voltage Attributes
- Pulse Current Attributes
- Cutoff Attributes
- Measurement Attributes
- Trigger Attributes Functions
- Event Attributes
- Advanced Attributes
- Inherent Ivi Attributes
- Supported Device Attributes
NI-DIGITAL PATTERN DRIVER
- Init And Close Functions
- Session Locking Functions
- Utility Functions
- Error Handling Functions
- Calibration Functions
- Attributes Functions
- Pin Map Functions
- Low Level Functions
- Low Level Action Functions
- Pin Control Functions
- Static IO Functions
- Clock Generator Functions
- Levels And Timing Functions
- TDR Functions
- PPMU Configuration Functions
- DC Voltage Functions
- DC Current Functions
- PPMU Action Functions
- Pattern Configuration Functions
- Pattern Action Functions
- History Ram Functions
- Source Memory Functions
- Capture Memory Functions
- Triggers And Events Functions
- Conditional Jump Trigger Functions
- Sequencer Flag Functions
- Sequencer Register Functions
- Match Fail Combination Functions
- Pattern Results Functions
- Sort Results Functions
- Frequency Measurement Functions
- IVI Inherent Attributes
- Specific Driver Information Attributes, Read Only
- Driver Setup Information Attributes
- Device Attributes
- Pin Control Attributes
- Level Configuration Attributes
- Trigger Configuration Attributes
- PPMU Attributes
- Patterns Attributes
- Pattern Opcode Event Attributes
- Timing Offset Attributes
- Keep Alive Attributes
- Frequency Measurement Attributes
- Clock Generator Attributes
- History RAM
- Synchronization Attributes
- TDR Endpoint Termination Attributes
NI-FGEN
- Setup Functions
- Configuration Functions
- Standard Output Functions
- Arbitrary Waveform Output Functions
- Arbitrary Sequence Output Functions
- Incremental Waveform Write Functions
- Configure Clock Functions
- Trigger And Syncronizations Functions
- 5404 Routing Functions
- Script Output Functions
- Configure Onboard Signal Processing Functions
- Configure Peer To Peer Functions
- Attribute Functions
- Waveform Control Functions
- Error Functions
- Output Attributes
- Arbitrary Waveform Attributes
- Data Transfer Attributes
- Onboard Signal Processing Attributes
- Peer To Peer Attributes
- Standard Function Attributes
- Clock Attributes
- Event Attributes
- Triggering Attributes
- Instrument Specific Attributes
- Inherent IVI Attributes
- 5401 5411 5431
NI-RFmx Bluetooth
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Fetch Results Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Packet Attributes
- Auto Detect Signal Attributes
- Modacc Attributes
- ACP Attributes
- Twenty dB Attributes
- Frequency Range Attributes
- TXP Attributes
- Advanced Attributes
NI-RFmx NR
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attributes Functions
- Fetch Results Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Signal Detection Attributes
- Component Carrier Attributes
- List Attributes
- Modacc Attributes
- ACP Attributes
- CHP Attributes
- OBW Attributes
- SEM Attributes
- TXP Attributes
- Pvt Attributes
- Advanced Attributes
NI-RFmx LTE
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Ch Configuration Functions
- NB IoT Configuration Functions
- ModAcc Configuration Functions
- ACP Configuration Functions
- CHP Configuration Functions
- OBW Configuration Functions
- SEM Configuration Functions
- PVT Configuration Functions
- SlotPhase Configuration Functions
- SlotPower Configuration Functions
- Set And Get Attribute Functions
- ModAcc Fetch Functions
- ACP Fetch Functions
- CHP Fetch Functions
- OBW Fetch Functions
- SEM Fetch Functions
- PVT Fetch Functions
- SlotPhase Fetch Functions
- SlotPower Fetch Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Component Carrier Attributes
- ModAcc Attributes
- ACP Attributes
- CHP Attributes
- OBW Attributes
- SEM Attributes
- PVT Attributes
- SlotPhase Attributes
- SlotPower Attributes
- Advanced Attributes
NI-RFmx SpecAn
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Read Functions
- Fetch Functions
- Utility Functions
- Marker Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- ACP Attributes
- Cdf Attributes
- CHP Attributes
- Fcnt Attributes
- Harm Attributes
- OBW Attributes
- SEM Attributes
- Spectrum Attributes
- Spur Attributes
- TXP Attributes
- AMPM Attributes
- Dpd Attributes
- IQ Attributes
- IM Attributes
- NF Attributes
- Phasenoise Attributes
- PAVT Attributes
- Advanced Attributes
NI-RFmx WLAN
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Fetch DSSS ModAcc Functions
- Fetch OFDM ModAcc Functions
- Fetch SEM Functions
- Fetch TXP Functions
- Fetch PowerRamp Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- OFDM Attributes
- Auto Detect Signal Attributes
- DSSS ModAcc Attributes
- OFDM ModAcc Attributes
- SEM Attributes
- TXP Attributes
- PowerRamp Attributes
- Advanced Attributes
NI-RFSA
- General Functions
- Configuration Functions
- Acquisition Functions
- Utility Functions
- Calibration Functions
- General Attributes
- Vertical Attributes
- Signal Path Attributes
- Acquisition Attributes
- Acquisition Attributes
- Triggers Attributes
- Events Attributes
- Device Characteristics Attributes
- Peer To Peer Streaming Attributes
- Configuration List Attributes
- Inherent IVI Properties Attributes
- De-embedding Attributes
- Self Calibration Attributes
- Factory Calibration Attributes
- External Alignment Attributes
- Device Specific Attributes
NI-RFSG
- General Functions
- Generation Configuration
- Utility Functions
- Calibration Functions
- Arb Attributes
- Clock Attributes
- Configuration List Attributes
- De-embedding Attributes
- Device Characteristics Attributes
- Device Specific Attributes
- Events Attributes
- External Calibration Attributes
- Inherent IVI Attributes Attributes
- IQ Impairment Attributes
- Load Configurations Attributes
- Modulation Attributes
- Obsolete Attributes
- Peer To Peer Attributes
- RF Attributes
- Self Calibration Attributes
- Triggers Attributes
NI-SCOPE
- Setup Functions
- Configure Functions
- Attribute Functions
- Acquisition Functions
- Measurement Functions
- Calibrate Functions
- Utility Funcitons
- Error Handling Functions
- IVI Compliance Or Obsolete Functions
- Vertical Attributes
- Horizontal Attributes
- Trigger Attributes
- Clocking Attributes
- Synchronization Attributes
- Acquisition Attributes
- Waveform Measurements Attributes
- Onboard Signal Processing Attributes
- Peer To Peer Streaming Attributes
- Device Attributes
- IVI Or Obsolete Attributes
- Instrument Capabilities Attributes
- If Digitizer Attributes
NI-XNET
- gRPC API differences from C APIs
- General Functions
- Cluster Properties
- Database Properties
- Device Properties
- ECU Properties
- Frame Properties
- Interface Properties
- LIN Schedule Entry Properties
- LIN Schedule Properties
- PDU Properties
- Session Ethernet Properties
- Session Frame Properties
- Session Interface Properties
- Session Properties
- Session SAE J1939 Properties
- Signal Properties
- Subframe Properties
- System Properties
- IP-Stack Functions
- Socket Options
- Socket Functions