-
Notifications
You must be signed in to change notification settings - Fork 50
NI RFmx SpecAn Spectrum Attributes
Alex Starche edited this page Feb 28, 2022
·
4 revisions
- RFMXSPECAN_ATTR_SPECTRUM_MEASUREMENT_ENABLED
- RFMXSPECAN_ATTR_SPECTRUM_SPAN
- RFMXSPECAN_ATTR_SPECTRUM_POWER_UNITS
- RBW Filter
- VBW Filter
- Sweep Time
- Detector
- Noise Calibration
- Noise Compensation
- Averaging
- RFMXSPECAN_ATTR_SPECTRUM_MEASUREMENT_MODE
- FFT
- RFMXSPECAN_ATTR_SPECTRUM_AMPLITUDE_CORRECTION_TYPE
- RFMXSPECAN_ATTR_SPECTRUM_NUMBER_OF_ANALYSIS_THREADS
- Results
Data Type: | int32 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeI32 RFmxSpecAn_GetAttributeI32 |
Description: | Specifies whether to enable the spectrum measurement. You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is RFMXSPECAN_VAL_FALSE. Get Function: RFmxSpecAn_SpectrumGetMeasurementEnabled Set Function: RFmxSpecAn_SpectrumSetMeasurementEnabled |
Data Type: | float64 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeF64 RFmxSpecAn_GetAttributeF64 |
Description: | Specifies the frequency range around the center frequency, to acquire for the measurement. This value is expressed in Hz. You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is 1 MHz. Get Function: RFmxSpecAn_SpectrumGetSpan Set Function: RFmxSpecAn_SpectrumSetSpan |
Data Type: | int32 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeI32 RFmxSpecAn_GetAttributeI32 |
Description: | Specifies the units for the absolute power. You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is RFMXSPECAN_VAL_SPECTRUM_POWER_UNITS_DBM_PER_HZ. Get Function: RFmxSpecAn_SpectrumGetPowerUnits Set Function: RFmxSpecAn_SpectrumSetPowerUnits |
Values: |
RFMXSPECAN_VAL_SPECTRUM_POWER_UNITS_DBM (0) | The absolute powers are reported in dBm. |
---|---|
RFMXSPECAN_VAL_SPECTRUM_POWER_UNITS_DBM_PER_HZ (1) | The absolute powers are reported in dBm/Hz. |
RFMXSPECAN_VAL_SPECTRUM_POWER_UNITS_DBW (2) | The absolute powers are reported in dBW. |
RFMXSPECAN_VAL_SPECTRUM_POWER_UNITS_DBV (3) | The absolute powers are reported in dBV. |
RFMXSPECAN_VAL_SPECTRUM_POWER_UNITS_DBMV (4) | The absolute powers are reported in dBmV. |
RFMXSPECAN_VAL_SPECTRUM_POWER_UNITS_DBUV (5) | The absolute powers are reported in dBuV. |
RFMXSPECAN_VAL_SPECTRUM_POWER_UNITS_WATTS (6) | The absolute powers are reported in W. |
RFMXSPECAN_VAL_SPECTRUM_POWER_UNITS_VOLTS (7) | The absolute powers are reported in volts. |
RFMXSPECAN_VAL_SPECTRUM_POWER_UNITS_VOLTS_SQUARED (8) | The absolute powers are reported in volts2. |
Data Type: | int32 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeI32 RFmxSpecAn_GetAttributeI32 |
Description: | Specifies whether the measurement computes the resolution bandwidth (RBW). You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is RFMXSPECAN_VAL_SPECTRUM_RBW_AUTO_TRUE. Get Function: RFmxSpecAn_SpectrumGetRBWFilterAutoBandwidth Set Function: RFmxSpecAn_SpectrumSetRBWFilterAutoBandwidth |
Values: |
RFMXSPECAN_VAL_SPECTRUM_RBW_AUTO_FALSE (0) | The measurement uses the RBW that you specify in the RFMXSPECAN_ATTR_SPECTRUM_RBW_FILTER_BANDWIDTH attribute. |
---|---|
RFMXSPECAN_VAL_SPECTRUM_RBW_AUTO_TRUE (1) | The measurement computes the RBW. |
Data Type: | float64 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeF64 RFmxSpecAn_GetAttributeF64 |
Description: | Specifies the bandwidth of the resolution bandwidth (RBW) filter used to sweep the acquired signal, when you set the RFMXSPECAN_ATTR_SPECTRUM_RBW_FILTER_AUTO_BANDWIDTH attribute to RFMXSPECAN_VAL_SPECTRUM_RBW_AUTO_FALSE. This value is expressed in Hz. You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is 10 kHz. Get Function: RFmxSpecAn_SpectrumGetRBWFilterBandwidth Set Function: RFmxSpecAn_SpectrumSetRBWFilterBandwidth |
Data Type: | int32 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeI32 RFmxSpecAn_GetAttributeI32 |
Description: | Specifies the shape of the digital resolution bandwidth (RBW) filter. You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is RFMXSPECAN_VAL_SPECTRUM_RBW_FILTER_TYPE_GAUSSIAN. Get Function: RFmxSpecAn_SpectrumGetRBWFilterType Set Function: RFmxSpecAn_SpectrumSetRBWFilterType |
Values: |
RFMXSPECAN_VAL_SPECTRUM_RBW_FILTER_TYPE_FFT_BASED (0) | No RBW filtering is performed. |
---|---|
RFMXSPECAN_VAL_SPECTRUM_RBW_FILTER_TYPE_GAUSSIAN (1) | The RBW filter has a Gaussian response. |
RFMXSPECAN_VAL_SPECTRUM_RBW_FILTER_TYPE_FLAT (2) | The RBW filter has a flat response. |
Data Type: | int32 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeI32 RFmxSpecAn_GetAttributeI32 |
Description: | Specifies the bandwidth definition which you use to specify the value of the RFMXSPECAN_ATTR_SPECTRUM_RBW_FILTER_BANDWIDTH attribute. The default value is RFMXSPECAN_VAL_SPECTRUM_RBW_FILTER_BANDWIDTH_DEFINITION_3DB. Get Function: RFmxSpecAn_SpectrumGetRBWFilterBandwidthDefinition Set Function: RFmxSpecAn_SpectrumSetRBWFilterBandwidthDefinition |
Values: |
RFMXSPECAN_VAL_SPECTRUM_RBW_FILTER_BANDWIDTH_DEFINITION_3DB (0) | Defines the RBW in terms of the 3dB bandwidth of the RBW filter. When you set the RFMXSPECAN_ATTR_SPECTRUM_RBW_FILTER_TYPE attribute to RFMXSPECAN_VAL_SPECTRUM_RBW_FILTER_TYPE_FFT_BASED, RBW is the 3dB bandwidth of the window specified by the RFMXSPECAN_ATTR_SPECTRUM_FFT_WINDOW attribute. |
---|---|
RFMXSPECAN_VAL_SPECTRUM_RBW_FILTER_BANDWIDTH_DEFINITION_6DB (1) | Defines the RBW in terms of the 6dB bandwidth of the RBW filter. When you set the RFMXSPECAN_ATTR_SPECTRUM_RBW_FILTER_TYPE attribute to FFT Based, RBW is the 6dB bandwidth of the window specified by the RFMXSPECAN_ATTR_SPECTRUM_FFT_WINDOW attribute. |
RFMXSPECAN_VAL_SPECTRUM_RBW_FILTER_BANDWIDTH_DEFINITION_BIN_WIDTH (2) | Defines the RBW in terms of the spectrum bin width computed using FFT when you set the RFMXSPECAN_ATTR_SPECTRUM_RBW_FILTER_TYPE attribute to FFT Based. |
RFMXSPECAN_VAL_SPECTRUM_RBW_FILTER_BANDWIDTH_DEFINITION_ENBW (3) | Defines the RBW in terms of the ENBW bandwidth of the RBW filter. When you set the RFMXSPECAN_ATTR_SPECTRUM_RBW_FILTER_TYPE attribute to FFT Based, RBW is the ENBW bandwidth of the window specified by the RFMXSPECAN_ATTR_SPECTRUM_FFT_WINDOW attribute. |
Data Type: | int32 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeI32 RFmxSpecAn_GetAttributeI32 |
Description: | Specifies whether the video bandwidth (VBW) is expressed directly or computed based on the VBW to RBW ratio. You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is RFMXSPECAN_VAL_SPECTRUM_VBW_FILTER_AUTO_BANDWIDTH_True. Get Function: RFmxSpecAn_SpectrumGetVBWFilterAutoBandwidth Set Function: RFmxSpecAn_SpectrumSetVBWFilterAutoBandwidth |
Values: |
RFMXSPECAN_VAL_SPECTRUM_VBW_FILTER_AUTO_BANDWIDTH_False (0) | Specify the video bandwidth in the RFMXSPECAN_ATTR_SPECTRUM_VBW_FILTER_BANDWIDTH attribute. The RFMXSPECAN_ATTR_SPECTRUM_VBW_FILTER_VBW_TO_RBW_RATIO attribute is disregarded in this mode. |
---|---|
RFMXSPECAN_VAL_SPECTRUM_VBW_FILTER_AUTO_BANDWIDTH_True (1) | Specify video bandwidth in terms of the VBW to RBW ratio. The value of the video bandwidth is then computed by using the RFMXSPECAN_ATTR_SPECTRUM_VBW_FILTER_VBW_TO_RBW_RATIO attribute and the RFMXSPECAN_ATTR_SPECTRUM_RBW_FILTER_BANDWIDTH attribute. The value of the RFMXSPECAN_ATTR_SPECTRUM_VBW_FILTER_BANDWIDTH attribute is disregarded in this mode. |
Data Type: | float64 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeF64 RFmxSpecAn_GetAttributeF64 |
Description: | Specifies the video bandwidth (VBW) in Hz when you set the RFMXSPECAN_ATTR_SPECTRUM_VBW_FILTER_AUTO_BANDWIDTH attribute to RFMXSPECAN_VAL_SPECTRUM_VBW_FILTER_AUTO_BANDWIDTH_False. You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is 30000. Get Function: RFmxSpecAn_SpectrumGetVBWFilterBandwidth Set Function: RFmxSpecAn_SpectrumSetVBWFilterBandwidth |
Data Type: | float64 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeF64 RFmxSpecAn_GetAttributeF64 |
Description: | Specifies the VBW to RBW Ratio when you set the RFMXSPECAN_ATTR_SPECTRUM_VBW_FILTER_AUTO_BANDWIDTH attribute to RFMXSPECAN_VAL_SPECTRUM_VBW_FILTER_AUTO_BANDWIDTH_True . You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is 3. Get Function: RFmxSpecAn_SpectrumGetVBWFilterVBWToRBWRatio Set Function: RFmxSpecAn_SpectrumSetVBWFilterVBWToRBWRatio |
Data Type: | int32 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeI32 RFmxSpecAn_GetAttributeI32 |
Description: | Specifies whether the measurement computes the sweep time. You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is RFMXSPECAN_VAL_SPECTRUM_SWEEP_TIME_AUTO_TRUE. Get Function: RFmxSpecAn_SpectrumGetSweepTimeAuto Set Function: RFmxSpecAn_SpectrumSetSweepTimeAuto |
Values: |
RFMXSPECAN_VAL_SPECTRUM_SWEEP_TIME_AUTO_FALSE (0) | The measurement uses the sweep time that you specify in the RFMXSPECAN_ATTR_SPECTRUM_SWEEP_TIME_INTERVAL attribute. |
---|---|
RFMXSPECAN_VAL_SPECTRUM_SWEEP_TIME_AUTO_TRUE (1) | The measurement calculates the sweep time based on the value of the RFMXSPECAN_ATTR_SPECTRUM_RBW_FILTER_BANDWIDTH attribute. |
Data Type: | float64 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeF64 RFmxSpecAn_GetAttributeF64 |
Description: | Specifies the sweep time when you set the RFMXSPECAN_ATTR_SPECTRUM_SWEEP_TIME_AUTO attribute to RFMXSPECAN_VAL_SPECTRUM_SWEEP_TIME_AUTO_FALSE. This value is expressed in seconds. You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is 0.001. Get Function: RFmxSpecAn_SpectrumGetSweepTimeInterval Set Function: RFmxSpecAn_SpectrumSetSweepTimeInterval |
Data Type: | int32 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeI32 RFmxSpecAn_GetAttributeI32 |
Description: | Specifies the type of detector to be used. You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is RFMXSPECAN_VAL_SPECTRUM_DETECTOR_TYPE_NONE. Refer to Spectral Measurements topic for more information on detector types. Get Function: RFmxSpecAn_SpectrumGetDetectorType Set Function: RFmxSpecAn_SpectrumSetDetectorType |
Values: |
RFMXSPECAN_VAL_SPECTRUM_DETECTOR_TYPE_NONE (0) | The detector is disabled. |
---|---|
RFMXSPECAN_VAL_SPECTRUM_DETECTOR_TYPE_SAMPLE (1) | The middle sample in the bucket is detected. |
RFMXSPECAN_VAL_SPECTRUM_DETECTOR_TYPE_NORMAL (2) | The maximum value of the samples within the bucket is detected if the signal only rises or if the signal only falls. If the signal, within a bucket, both rises and falls, then the maximum and minimum values of the samples are detected in alternate buckets. |
RFMXSPECAN_VAL_SPECTRUM_DETECTOR_TYPE_PEAK (3) | The maximum value of the samples in the bucket is detected. |
RFMXSPECAN_VAL_SPECTRUM_DETECTOR_TYPE_NEGATIVE_PEAK (4) | The minimum value of the samples in the bucket is detected. |
RFMXSPECAN_VAL_SPECTRUM_DETECTOR_TYPE_AVERAGE_RMS (5) | The average RMS of all the samples in the bucket is detected. |
RFMXSPECAN_VAL_SPECTRUM_DETECTOR_TYPE_AVERAGE_VOLTAGE (6) | The average voltage of all the samples in the bucket is detected. |
RFMXSPECAN_VAL_SPECTRUM_DETECTOR_TYPE_AVERAGE_LOG (7) | The average log of all the samples in the bucket is detected. |
Data Type: | int32 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeI32 RFmxSpecAn_GetAttributeI32 |
Description: | Specifies the number of trace points after the detector is applied. You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is 1001. Get Function: RFmxSpecAn_SpectrumGetDetectorPoints Set Function: RFmxSpecAn_SpectrumSetDetectorPoints |
Data Type: | int32 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeI32 RFmxSpecAn_GetAttributeI32 |
Description: | Specifies whether the noise calibration and measurement is performed manually by the user or automatically by RFmx. Refer to the measurement guidelines section in the Noise Compensation Algorithm topic for more information. You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is RFMXSPECAN_VAL_SPECTRUM_NOISE_CALIBRATION_MODE_AUTO. Get Function: RFmxSpecAn_SpectrumGetNoiseCalibrationMode Set Function: RFmxSpecAn_SpectrumSetNoiseCalibrationMode |
Values: |
RFMXSPECAN_VAL_SPECTRUM_NOISE_CALIBRATION_MODE_MANUAL (0) | When you set the RFMXSPECAN_ATTR_SPECTRUM_MEASUREMENT_MODE attribute to RFMXSPECAN_VAL_SPECTRUM_MEASUREMENT_MODE_CALIBRATE_NOISE_FLOOR, you can initiate instrument noise calibration for the spectrum measurement manually. When you set the RFMXSPECAN_ATTR_SPECTRUM_MEASUREMENT_MODE attribute to RFMXSPECAN_VAL_SPECTRUM_MEASUREMENT_MODE_MEASURE, you can initiate the spectrum measurement manually. |
---|---|
RFMXSPECAN_VAL_SPECTRUM_NOISE_CALIBRATION_MODE_AUTO (1) | When you set the RFMXSPECAN_ATTR_SPECTRUM_NOISE_COMPENSATION_ENABLED attribute to RFMXSPECAN_VAL_SPECTRUM_NOISE_COMPENSATION_ENABLED_TRUE, RFmx sets the Input Isolation Enabled attribute to Enabled and calibrates the intrument noise in the current state of the instrument. RFmx then resets the Input Isolation Enabled attribute and performs the spectrum measurement, including compensation for noise from the instrument. RFmx skips noise calibration in this mode if valid noise calibration data is already cached. When you set the RFMXSPECAN_ATTR_SPECTRUM_NOISE_COMPENSATION_ENABLED attribute to RFMXSPECAN_VAL_SPECTRUM_NOISE_COMPENSATION_ENABLED_FALSE, RFmx does not calibrate instrument noise and performs only the spectrum measurement without compensating for the noise from the instrument. |
Data Type: | int32 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeI32 RFmxSpecAn_GetAttributeI32 |
Description: | Specifies whether RFmx automatically computes the averaging count used for instrument noise calibration. You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is RFMXSPECAN_VAL_SPECTRUM_NOISE_CALIBRATION_AVERAGING_AUTO_TRUE. Get Function: RFmxSpecAn_SpectrumGetNoiseCalibrationAveragingAuto Set Function: RFmxSpecAn_SpectrumSetNoiseCalibrationAveragingAuto |
Values: |
RFMXSPECAN_VAL_SPECTRUM_NOISE_CALIBRATION_AVERAGING_AUTO_FALSE (0) | RFmx uses the averages that you set for the RFMXSPECAN_ATTR_SPECTRUM_NOISE_CALIBRATION_AVERAGING_COUNT attribute. |
---|---|
RFMXSPECAN_VAL_SPECTRUM_NOISE_CALIBRATION_AVERAGING_AUTO_TRUE (1) | RFmx uses a noise calibration averaging count of 32. |
Data Type: | int32 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeI32 RFmxSpecAn_GetAttributeI32 |
Description: | Specifies the averaging count used for noise calibration when you set the RFMXSPECAN_ATTR_SPECTRUM_NOISE_CALIBRATION_AVERAGING_AUTO attribute to RFMXSPECAN_VAL_SPECTRUM_NOISE_CALIBRATION_AVERAGING_AUTO_FALSE. You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is 32. Get Function: RFmxSpecAn_SpectrumGetNoiseCalibrationAveragingCount Set Function: RFmxSpecAn_SpectrumSetNoiseCalibrationAveragingCount |
Data Type: | int32 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeI32 RFmxSpecAn_GetAttributeI32 |
Description: | Specifies whether RFmx compensates for the instrument noise while performing the measurement when you set the RFMXSPECAN_ATTR_SPECTRUM_NOISE_CALIBRATION_MODE attribute to RFMXSPECAN_VAL_SPECTRUM_NOISE_CALIBRATION_MODE_AUTO, or when you set the RFMXSPECAN_ATTR_SPECTRUM_NOISE_CALIBRATION_MODE attribute to RFMXSPECAN_VAL_SPECTRUM_NOISE_CALIBRATION_MODE_MANUAL and RFMXSPECAN_ATTR_SPECTRUM_MEASUREMENT_MODE to RFMXSPECAN_VAL_SPECTRUM_MEASUREMENT_MODE_MEASURE. Refer to the Noise Compensation Algorithm topic for more information. You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is RFMXSPECAN_VAL_SPECTRUM_NOISE_COMPENSATION_ENABLED_FALSE. Supported Devices: PXIe-5663/5665/5668, PXIe-5830/5831/5832 Get Function: RFmxSpecAn_SpectrumGetNoiseCompensationEnabled Set Function: RFmxSpecAn_SpectrumSetNoiseCompensationEnabled |
Values: |
RFMXSPECAN_VAL_SPECTRUM_NOISE_COMPENSATION_ENABLED_FALSE (0) | Disables compensation of the spectrum for the noise floor of the signal analyzer. |
---|---|
RFMXSPECAN_VAL_SPECTRUM_NOISE_COMPENSATION_ENABLED_TRUE (1) | Enables compensation of the spectrum for the noise floor of the signal analyzer. The noise floor of the signal analyzer is measured for the RF path used by the Spectrum measurement and cached for future use. If signal analyzer or measurement parameters change, noise floors are measured again. |
Data Type: | int32 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeI32 RFmxSpecAn_GetAttributeI32 |
Description: | Specifies the noise compensation type. Refer to the Noise Compensation Algorithm topic for more information. You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is RFMXSPECAN_VAL_SPECTRUM_NOISE_COMPENSATION_TYPE_ANALYZER_AND_TERMINATION. Get Function: RFmxSpecAn_SpectrumGetNoiseCompensationType Set Function: RFmxSpecAn_SpectrumSetNoiseCompensationType |
Values: |
RFMXSPECAN_VAL_SPECTRUM_NOISE_COMPENSATION_TYPE_ANALYZER_AND_TERMINATION (0) | Compensates for noise from the analyzer and the 50 ohm termination. The measured power values are in excess of the thermal noise floor. |
---|---|
RFMXSPECAN_VAL_SPECTRUM_NOISE_COMPENSATION_TYPE_ANALYZER_ONLY (1) | Compensates for the analyzer noise only. |
Data Type: | int32 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeI32 RFmxSpecAn_GetAttributeI32 |
Description: | Specifies whether to enable averaging for the spectrum measurement. You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is RFMXSPECAN_VAL_SPECTRUM_AVERAGING_ENABLED_FALSE. Get Function: RFmxSpecAn_SpectrumGetAveragingEnabled Set Function: RFmxSpecAn_SpectrumSetAveragingEnabled |
Values: |
RFMXSPECAN_VAL_SPECTRUM_AVERAGING_ENABLED_FALSE (0) | The measurement is performed on a single acquisition. |
---|---|
RFMXSPECAN_VAL_SPECTRUM_AVERAGING_ENABLED_TRUE (1) | The spectrum measurement uses the RFMXSPECAN_ATTR_SPECTRUM_AVERAGING_COUNT attribute as the number of acquisitions over which the spectrum measurement is averaged. |
Data Type: | int32 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeI32 RFmxSpecAn_GetAttributeI32 |
Description: | Specifies the number of acquisitions used for averaging when you set the RFMXSPECAN_ATTR_SPECTRUM_AVERAGING_ENABLED attribute to RFMXSPECAN_VAL_SPECTRUM_AVERAGING_ENABLED_TRUE. You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is 10. Get Function: RFmxSpecAn_SpectrumGetAveragingCount Set Function: RFmxSpecAn_SpectrumSetAveragingCount |
Data Type: | int32 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeI32 RFmxSpecAn_GetAttributeI32 |
Description: | Specifies the averaging type for averaging multiple spectrum acquisitions. The averaged spectrum is used for spectrum measurement. You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is RFMXSPECAN_VAL_SPECTRUM_AVERAGING_TYPE_RMS. Get Function: RFmxSpecAn_SpectrumGetAveragingType Set Function: RFmxSpecAn_SpectrumSetAveragingType |
Values: |
RFMXSPECAN_VAL_SPECTRUM_AVERAGING_TYPE_RMS (0) | The power spectrum is linearly averaged. RMS averaging reduces signal fluctuations but not the noise floor. |
---|---|
RFMXSPECAN_VAL_SPECTRUM_AVERAGING_TYPE_LOG (1) | The power spectrum is averaged in a logarithmic scale. |
RFMXSPECAN_VAL_SPECTRUM_AVERAGING_TYPE_SCALAR (2) | The square root of the power spectrum is averaged. |
RFMXSPECAN_VAL_SPECTRUM_AVERAGING_TYPE_MAXIMUM (3) | The peak power in the spectrum at each frequency bin is retained from one acquisition to the next. |
RFMXSPECAN_VAL_SPECTRUM_AVERAGING_TYPE_MINIMUM (4) | The least power in the spectrum at each frequency bin is retained from one acquisition to the next. |
Data Type: | int32 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeI32 RFmxSpecAn_GetAttributeI32 |
Description: | Specifies whether the measurement calibrates the noise floor of analyzer or performs the spectrum measurement. Refer to the measurement guidelines section in the Noise Compensation Algorithm topic for more information. You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is RFMXSPECAN_VAL_SPECTRUM_MEASUREMENT_MODE_MEASURE. Get Function: RFmxSpecAn_SpectrumGetMeasurementMode Set Function: RFmxSpecAn_SpectrumSetMeasurementMode |
Values: |
RFMXSPECAN_VAL_SPECTRUM_MEASUREMENT_MODE_MEASURE (0) | Spectrum measurement is performed on the acquired signal. |
---|---|
RFMXSPECAN_VAL_SPECTRUM_MEASUREMENT_MODE_CALIBRATE_NOISE_FLOOR (1) | Manual noise calibration of the signal analyzer is performed for the spectrum measurement. |
Data Type: | int32 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeI32 RFmxSpecAn_GetAttributeI32 |
Description: | Specifies the FFT window type to use to reduce spectral leakage. You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is RFMXSPECAN_VAL_SPECTRUM_FFT_WINDOW_FLAT_TOP. Get Function: RFmxSpecAn_SpectrumGetFFTWindow Set Function: RFmxSpecAn_SpectrumSetFFTWindow |
Values: |
RFMXSPECAN_VAL_SPECTRUM_FFT_WINDOW_NONE (0) | Analyzes transients for which duration is shorter than the window length. You can also use this window type to separate two tones with frequencies close to each other but with almost equal amplitudes. |
---|---|
RFMXSPECAN_VAL_SPECTRUM_FFT_WINDOW_FLAT_TOP (1) | Measures single-tone amplitudes accurately. |
RFMXSPECAN_VAL_SPECTRUM_FFT_WINDOW_HANNING (2) | Analyzes transients for which duration is longer than the window length. You can also use this window type to provide better frequency resolution for noise measurements. |
RFMXSPECAN_VAL_SPECTRUM_FFT_WINDOW_HAMMING (3) | Analyzes closely-spaced sine waves. |
RFMXSPECAN_VAL_SPECTRUM_FFT_WINDOW_GAUSSIAN (4) | Provides a good balance of spectral leakage, frequency resolution, and amplitude attenuation. Hence, this windowing is useful for time-frequency analysis. |
RFMXSPECAN_VAL_SPECTRUM_FFT_WINDOW_BLACKMAN (5) | Analyzes single tone because it has a low maximum side lobe level and a high side lobe roll-off rate. |
RFMXSPECAN_VAL_SPECTRUM_FFT_WINDOW_BLACKMAN_HARRIS (6) | Useful as a good general purpose window, having side lobe rejection greater than 90 dB and having a moderately wide main lobe. |
RFMXSPECAN_VAL_SPECTRUM_FFT_WINDOW_KAISER_BESSEL (7) | Separates two tones with frequencies close to each other but with widely-differing amplitudes. |
Data Type: | float64 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeF64 RFmxSpecAn_GetAttributeF64 |
Description: | Specifies the factor by which the time-domain waveform is zero-padded before FFT. The FFT size is given by the following formula: waveform size * padding This attribute is used only when the acquisition span is less than the device instantaneous bandwidth of the device. You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is -1. Get Function: RFmxSpecAn_SpectrumGetFFTPadding Set Function: RFmxSpecAn_SpectrumSetFFTPadding |
Data Type: | int32 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeI32 RFmxSpecAn_GetAttributeI32 |
Description: | Specifies whether the amplitude of the frequency bins, used in the measurement, is corrected for external attenuation at the RF center frequency, or at the individual frequency bins. Use the RFmxInstr_CfgExternalAttenuationTable function to configure the external attenuation table. You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is RFMXSPECAN_VAL_SPECTRUM_AMPLITUDE_CORRECTION_TYPE_RF_CENTER_FREQUENCY. Get Function: RFmxSpecAn_SpectrumGetAmplitudeCorrectionType Set Function: RFmxSpecAn_SpectrumSetAmplitudeCorrectionType |
Values: |
RFMXSPECAN_VAL_SPECTRUM_AMPLITUDE_CORRECTION_TYPE_RF_CENTER_FREQUENCY (0) | All the frequency bins in the spectrum are compensated with a single external attenuation value that corresponds to the RF center frequency. |
---|---|
RFMXSPECAN_VAL_SPECTRUM_AMPLITUDE_CORRECTION_TYPE_SPECTRUM_FREQUENCY_BIN (1) | An individual frequency bin in the spectrum is compensated with the external attenuation value corresponding to that frequency. |
Data Type: | int32 |
---|---|
Access: | read/write |
Functions: | RFmxSpecAn_SetAttributeI32 RFmxSpecAn_GetAttributeI32 |
Description: | Specifies the maximum number of threads used for parallelism for spectrum measurement. The number of threads can range from 1 to the number of physical cores. The number of threads you set may not be used in calculations. The actual number of threads used depends on the problem size, system resources, data availability, and other considerations. You do not need to use a selector string to configure or read this attribute for the default signal instance. Refer to the Selector Strings topic for information about the string syntax for named signals. The default value is 1. Get Function: RFmxSpecAn_SpectrumGetNumberOfAnalysisThreads Set Function: RFmxSpecAn_SpectrumSetNumberOfAnalysisThreads |
Data Type: | float64 |
---|---|
Access: | read only |
Functions: | RFmxSpecAn_GetAttributeF64 |
Description: | Returns the peak amplitude, of the averaged spectrum. When you set the RFMXSPECAN_ATTR_SPECTRUM_SPAN attribute to 0, the measurement returns the peak amplitude in the time domain power trace. The amplitude is reported in units specified by the value of the RFMXSPECAN_ATTR_SPECTRUM_POWER_UNITS attribute. You do not need to use a selector string to read this result for default signal and result instance. Refer to the Selector Strings topic for information about the string syntax for named signals and results. Get Function: RFmxSpecAn_SpectrumGetResultsPeakAmplitude |
Data Type: | float64 |
---|---|
Access: | read only |
Functions: | RFmxSpecAn_GetAttributeF64 |
Description: | Returns the frequency at the peak amplitude of the averaged spectrum. This value is expressed in Hz. This attribute is not valid if you set the RFMXSPECAN_ATTR_SPECTRUM_SPAN attribute to 0. You do not need to use a selector string to read this result for default signal and result instance. Refer to the Selector Strings topic for information about the string syntax for named signals and results. Get Function: RFmxSpecAn_SpectrumGetResultsPeakFrequency |
Data Type: | float64 |
---|---|
Access: | read only |
Functions: | RFmxSpecAn_GetAttributeF64 |
Description: | Returns the frequency bin spacing of the spectrum acquired by the measurement. This value is expressed in Hz. This attribute is not valid if you set the RFMXSPECAN_ATTR_SPECTRUM_SPAN attribute to 0. You do not need to use a selector string to read this result for default signal and result instance. Refer to the Selector Strings topic for information about the string syntax for named signals and results. Get Function: RFmxSpecAn_SpectrumGetResultsFrequencyResolution |
Creating and Setting Up a gRPC Server
Session Utilities API Reference
gRPC API Differences From C API
Sharing Driver Sessions Between Clients
C API Docs
NI-DAQmx
- gRPC API Differences From C API
- Task Configuration And Control
- Channel Configuration And Creation
- Timing
- Triggering
- Read Functions
- Write Functions
- Export Hardware Signals
- Scale Configuration
- Internal Buffer Configuration
- Advanced Functions
- System Configuration
- Error Handling
- Buffer Attributes
- Calibration Info Attributes
- Channel Attributes
- Device Attributes
- Export Signal Attributes
- Persisted Channel Attributes
- Persisted Scale Attributes
- Persisted Task Attributes
- Physical Channel Attributes
- Read Attributes
- Scale Attributes
- System Attributes
- Task Attributes
- Timing Attributes
- Trigger Attributes
- Watchdog Attributes
- Write Attributes
NI-DCPOWER
- Setup Functions
- Configure Functions
- Measurement Functions
- Control Functions
- Trigger And Event
- Attribute Functions
- Query Functions
- Calibration Functions
- Utility Functions
- Supported Device
- Source Attributes
- Transient Attributes
- Voltage Attributes
- Current Attributes
- Pulse Voltage Attributes
- Pulse Current Attributes
- Cutoff Attributes
- Measurement Attributes
- Trigger Attributes Functions
- Event Attributes
- Advanced Attributes
- Inherent Ivi Attributes
- Supported Device Attributes
NI-DIGITAL PATTERN DRIVER
- Init And Close Functions
- Session Locking Functions
- Utility Functions
- Error Handling Functions
- Calibration Functions
- Attributes Functions
- Pin Map Functions
- Low Level Functions
- Low Level Action Functions
- Pin Control Functions
- Static IO Functions
- Clock Generator Functions
- Levels And Timing Functions
- TDR Functions
- PPMU Configuration Functions
- DC Voltage Functions
- DC Current Functions
- PPMU Action Functions
- Pattern Configuration Functions
- Pattern Action Functions
- History Ram Functions
- Source Memory Functions
- Capture Memory Functions
- Triggers And Events Functions
- Conditional Jump Trigger Functions
- Sequencer Flag Functions
- Sequencer Register Functions
- Match Fail Combination Functions
- Pattern Results Functions
- Sort Results Functions
- Frequency Measurement Functions
- IVI Inherent Attributes
- Specific Driver Information Attributes, Read Only
- Driver Setup Information Attributes
- Device Attributes
- Pin Control Attributes
- Level Configuration Attributes
- Trigger Configuration Attributes
- PPMU Attributes
- Patterns Attributes
- Pattern Opcode Event Attributes
- Timing Offset Attributes
- Keep Alive Attributes
- Frequency Measurement Attributes
- Clock Generator Attributes
- History RAM
- Synchronization Attributes
- TDR Endpoint Termination Attributes
NI-FGEN
- Setup Functions
- Configuration Functions
- Standard Output Functions
- Arbitrary Waveform Output Functions
- Arbitrary Sequence Output Functions
- Incremental Waveform Write Functions
- Configure Clock Functions
- Trigger And Syncronizations Functions
- 5404 Routing Functions
- Script Output Functions
- Configure Onboard Signal Processing Functions
- Configure Peer To Peer Functions
- Attribute Functions
- Waveform Control Functions
- Error Functions
- Output Attributes
- Arbitrary Waveform Attributes
- Data Transfer Attributes
- Onboard Signal Processing Attributes
- Peer To Peer Attributes
- Standard Function Attributes
- Clock Attributes
- Event Attributes
- Triggering Attributes
- Instrument Specific Attributes
- Inherent IVI Attributes
- 5401 5411 5431
NI-RFmx Bluetooth
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Fetch Results Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Packet Attributes
- Auto Detect Signal Attributes
- Modacc Attributes
- ACP Attributes
- Twenty dB Attributes
- Frequency Range Attributes
- TXP Attributes
- Advanced Attributes
NI-RFmx NR
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attributes Functions
- Fetch Results Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Signal Detection Attributes
- Component Carrier Attributes
- List Attributes
- Modacc Attributes
- ACP Attributes
- CHP Attributes
- OBW Attributes
- SEM Attributes
- TXP Attributes
- Pvt Attributes
- Advanced Attributes
NI-RFmx LTE
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Ch Configuration Functions
- NB IoT Configuration Functions
- ModAcc Configuration Functions
- ACP Configuration Functions
- CHP Configuration Functions
- OBW Configuration Functions
- SEM Configuration Functions
- PVT Configuration Functions
- SlotPhase Configuration Functions
- SlotPower Configuration Functions
- Set And Get Attribute Functions
- ModAcc Fetch Functions
- ACP Fetch Functions
- CHP Fetch Functions
- OBW Fetch Functions
- SEM Fetch Functions
- PVT Fetch Functions
- SlotPhase Fetch Functions
- SlotPower Fetch Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- Component Carrier Attributes
- ModAcc Attributes
- ACP Attributes
- CHP Attributes
- OBW Attributes
- SEM Attributes
- PVT Attributes
- SlotPhase Attributes
- SlotPower Attributes
- Advanced Attributes
NI-RFmx SpecAn
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Read Functions
- Fetch Functions
- Utility Functions
- Marker Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- ACP Attributes
- Cdf Attributes
- CHP Attributes
- Fcnt Attributes
- Harm Attributes
- OBW Attributes
- SEM Attributes
- Spectrum Attributes
- Spur Attributes
- TXP Attributes
- AMPM Attributes
- Dpd Attributes
- IQ Attributes
- IM Attributes
- NF Attributes
- Phasenoise Attributes
- PAVT Attributes
- Advanced Attributes
NI-RFmx WLAN
- gRPC API Differences From C API
- General Functions
- Configuration Functions
- Set And Get Attribute Functions
- Fetch DSSS ModAcc Functions
- Fetch OFDM ModAcc Functions
- Fetch SEM Functions
- Fetch TXP Functions
- Fetch PowerRamp Functions
- Utility Functions
- Build String Functions
- Advanced Functions
- General Attributes
- Trigger Attributes
- OFDM Attributes
- Auto Detect Signal Attributes
- DSSS ModAcc Attributes
- OFDM ModAcc Attributes
- SEM Attributes
- TXP Attributes
- PowerRamp Attributes
- Advanced Attributes
NI-RFSA
- General Functions
- Configuration Functions
- Acquisition Functions
- Utility Functions
- Calibration Functions
- General Attributes
- Vertical Attributes
- Signal Path Attributes
- Acquisition Attributes
- Acquisition Attributes
- Triggers Attributes
- Events Attributes
- Device Characteristics Attributes
- Peer To Peer Streaming Attributes
- Configuration List Attributes
- Inherent IVI Properties Attributes
- De-embedding Attributes
- Self Calibration Attributes
- Factory Calibration Attributes
- External Alignment Attributes
- Device Specific Attributes
NI-RFSG
- General Functions
- Generation Configuration
- Utility Functions
- Calibration Functions
- Arb Attributes
- Clock Attributes
- Configuration List Attributes
- De-embedding Attributes
- Device Characteristics Attributes
- Device Specific Attributes
- Events Attributes
- External Calibration Attributes
- Inherent IVI Attributes Attributes
- IQ Impairment Attributes
- Load Configurations Attributes
- Modulation Attributes
- Obsolete Attributes
- Peer To Peer Attributes
- RF Attributes
- Self Calibration Attributes
- Triggers Attributes
NI-SCOPE
- Setup Functions
- Configure Functions
- Attribute Functions
- Acquisition Functions
- Measurement Functions
- Calibrate Functions
- Utility Funcitons
- Error Handling Functions
- IVI Compliance Or Obsolete Functions
- Vertical Attributes
- Horizontal Attributes
- Trigger Attributes
- Clocking Attributes
- Synchronization Attributes
- Acquisition Attributes
- Waveform Measurements Attributes
- Onboard Signal Processing Attributes
- Peer To Peer Streaming Attributes
- Device Attributes
- IVI Or Obsolete Attributes
- Instrument Capabilities Attributes
- If Digitizer Attributes
NI-XNET
- gRPC API differences from C APIs
- General Functions
- Cluster Properties
- Database Properties
- Device Properties
- ECU Properties
- Frame Properties
- Interface Properties
- LIN Schedule Entry Properties
- LIN Schedule Properties
- PDU Properties
- Session Ethernet Properties
- Session Frame Properties
- Session Interface Properties
- Session Properties
- Session SAE J1939 Properties
- Signal Properties
- Subframe Properties
- System Properties
- IP-Stack Functions
- Socket Options
- Socket Functions