-
Notifications
You must be signed in to change notification settings - Fork 122
/
train.py
161 lines (130 loc) · 6.03 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
"""
Trains a DepthModel model. Uses an MVS dataset from datasets.
- Outputs logs and checkpoints to opts.log_dir/opts.name
- Supports mixed precision training by setting '--precision 16'
We train with a batch_size of 16 with 16-bit precision on two A100s.
Example command to train with two GPUs
python train.py --name HERO_MODEL \
--log_dir logs \
--config_file configs/models/hero_model.yaml \
--data_config configs/data/scannet_default_train.yaml \
--gpus 2 \
--batch_size 16;
"""
import os
import pytorch_lightning as pl
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.plugins import DDPPlugin
from torch.utils.data import DataLoader
import options
from experiment_modules.depth_model import DepthModel
from utils.generic_utils import copy_code_state
from utils.dataset_utils import get_dataset
def main(opts):
# set seed
pl.seed_everything(opts.random_seed)
if opts.load_weights_from_checkpoint is not None:
model = DepthModel.load_from_checkpoint(
opts.load_weights_from_checkpoint,
opts=opts,
args=None
)
else:
# load model using read options
model = DepthModel(opts)
# load dataset and dataloaders
dataset_class, _ = get_dataset(opts.dataset,
opts.dataset_scan_split_file, opts.single_debug_scan_id)
train_dataset = dataset_class(
opts.dataset_path,
split="train",
mv_tuple_file_suffix=opts.mv_tuple_file_suffix,
num_images_in_tuple=opts.num_images_in_tuple,
tuple_info_file_location=opts.tuple_info_file_location,
image_width=opts.image_width,
image_height=opts.image_height,
shuffle_tuple=opts.shuffle_tuple,
)
train_dataloader = DataLoader(
train_dataset,
batch_size=opts.batch_size,
shuffle=True,
num_workers=opts.num_workers,
pin_memory=True,
drop_last=True,
persistent_workers=True,
)
val_dataset = dataset_class(
opts.dataset_path,
split="val",
mv_tuple_file_suffix=opts.mv_tuple_file_suffix,
num_images_in_tuple=opts.num_images_in_tuple,
tuple_info_file_location=opts.tuple_info_file_location,
image_width=opts.image_width,
image_height=opts.image_height,
include_full_res_depth=opts.high_res_validation,
)
val_dataloader = DataLoader(
val_dataset,
batch_size=opts.val_batch_size,
shuffle=False,
num_workers=opts.num_workers,
pin_memory=True,
drop_last=True,
persistent_workers=True,
)
# set up a tensorboard logger through lightning
logger = TensorBoardLogger(save_dir=opts.log_dir, name=opts.name)
# This will copy a snapshot of the code (minus whatever is in .gitignore)
# into a folder inside the main log directory.
copy_code_state(path=os.path.join(logger.log_dir, "code"))
# dumping a copy of the config to the directory for easy(ier)
# reproducibility.
options.OptionsHandler.save_options_as_yaml(
os.path.join(logger.log_dir, "config.yaml"),
opts,
)
# set a checkpoint callback for lignting to save model checkpoints
checkpoint_callback = pl.callbacks.ModelCheckpoint(
save_last=True,
save_top_k=1,
verbose=True,
monitor='val/loss',
mode='min',
)
# keep track of changes in learning rate
lr_monitor = LearningRateMonitor(logging_interval='step')
# allowing the lightning DDPPlugin to ignore unused params.
find_unused_parameters = (opts.matching_encoder_type == "unet_encoder")
trainer = pl.Trainer(
gpus=opts.gpus,
log_every_n_steps=opts.log_interval,
val_check_interval=opts.val_interval,
limit_val_batches=opts.val_batches,
max_steps=opts.max_steps,
precision=opts.precision,
benchmark=True,
logger=logger,
sync_batchnorm=False,
callbacks=[checkpoint_callback, lr_monitor],
num_sanity_val_steps=opts.num_sanity_val_steps,
strategy=DDPPlugin(
find_unused_parameters=find_unused_parameters
),
resume_from_checkpoint=opts.resume,
)
# start training
trainer.fit(model, train_dataloader, val_dataloader)
if __name__ == '__main__':
# get an instance of options and load it with config file(s) and cli args.
option_handler = options.OptionsHandler()
option_handler.parse_and_merge_options()
option_handler.pretty_print_options()
print("\n")
opts = option_handler.options
# if no GPUs are available for us then, use the 32 bit on CPU
if opts.gpus == 0:
print("Setting precision to 32 bits since --gpus is set to 0.")
opts.precision = 32
main(opts)