-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDCP.py.txt
110 lines (85 loc) · 2.58 KB
/
DCP.py.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import cv2;
import math;
import numpy as np;
from google.colab.patches import cv2_imshow
#DCP starts
def DarkChannel(im,sz):
b,g,r = cv2.split(im)
dc = cv2.min(cv2.min(r,g),b);
kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(sz,sz))
dark = cv2.erode(dc,kernel)
return dark
def AtmLight(im,dark):
[h,w] = im.shape[:2]
imsz = h*w
numpx = int(max(math.floor(imsz/1000),1))
darkvec = dark.reshape(imsz);
imvec = im.reshape(imsz,3);
indices = darkvec.argsort();
indices = indices[imsz-numpx::]
atmsum = np.zeros([1,3])
for ind in range(1,numpx):
atmsum = atmsum + imvec[indices[ind]]
A = atmsum / numpx;
print(A)
return A
def TransmissionEstimate(im,A,sz):
omega = 0.95;
im3 = np.empty(im.shape,im.dtype);
for ind in range(0,3):
im3[:,:,ind] = im[:,:,ind]/A[0,ind]
transmission = 1 - omega*DarkChannel(im3,sz);
return transmission
def Guidedfilter(im,p,r,eps):
mean_I = cv2.boxFilter(im,cv2.CV_64F,(r,r));
mean_p = cv2.boxFilter(p, cv2.CV_64F,(r,r));
mean_Ip = cv2.boxFilter(im*p,cv2.CV_64F,(r,r));
cov_Ip = mean_Ip - mean_I*mean_p;
mean_II = cv2.boxFilter(im*im,cv2.CV_64F,(r,r));
var_I = mean_II - mean_I*mean_I;
a = cov_Ip/(var_I + eps);
b = mean_p - a*mean_I;
mean_a = cv2.boxFilter(a,cv2.CV_64F,(r,r));
mean_b = cv2.boxFilter(b,cv2.CV_64F,(r,r));
q = mean_a*im + mean_b;
return q;
def TransmissionRefine(im,et):
gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY);
gray = np.float64(gray)/255;
r = 60;
eps = 0.0001;
t = Guidedfilter(gray,et,r,eps);
return t;
def Recover(im,t,A,tx = 0.1):
res = np.empty(im.shape,im.dtype);
t = cv2.max(t,tx);
for ind in range(0,3):
res[:,:,ind] = (im[:,:,ind]-A[0,ind])/t + A[0,ind]
return res
if __name__ == '__main__':
import sys
try:
fn = './image/15.png'
except:
fn = './image/15.png'
def nothing(*argv):
pass
src = cv2.imread(fn);
I = src.astype('float64')/255;
dark = DarkChannel(I,15);
cv2_imshow(dark*255)
A = AtmLight(I,dark);
te = TransmissionEstimate(I,A,15);
t = TransmissionRefine(src,te);
J = Recover(I,t,A,0.1);
#cv2_imshow(dark);
#cv2_imshow(t_read)
#cv2_imshow(t_new)
cv2_imshow(src);
#cv2_imshow(J);
cv2.imwrite("./image/J.png",J*255);
src2 = cv2.imread("./image/J.png");
#I2 = src2.astype('float64')/255;
cv2_imshow(src2);
cv2.waitKey();
#DCP ends