forked from neurolabusc/T2lesion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bwlabels.js
278 lines (272 loc) · 7.78 KB
/
bwlabels.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
export class BWLabeler {
// port of https://github.com/rordenlab/niimath/blob/master/src/bwlabel.c
// return voxel address given row A, column B, and slice C
idx(A, B, C, DIM) {
return C * DIM[0] * DIM[1] + B * DIM[0] + A
} // idx()
// determine if voxels below candidate voxel have already been assigned a label
check_previous_slice(bw, il, r, c, sl, dim, conn, tt, nabo, tn) {
let nr_set = 0
if (!sl) {
return 0
}
const val = bw[this.idx(r, c, sl, dim)]
if (conn >= 6) {
const idx = this.idx(r, c, sl - 1, dim)
if (val === bw[idx]) {
nabo[nr_set++] = il[idx]
}
}
if (conn >= 18) {
if (r) {
const idx = this.idx(r - 1, c, sl - 1, dim)
if (val === bw[idx]) {
nabo[nr_set++] = il[idx]
}
}
if (c) {
const idx = this.idx(r, c - 1, sl - 1, dim)
if (val === bw[idx]) {
nabo[nr_set++] = il[idx]
}
}
if (r < dim[0] - 1) {
const idx = this.idx(r + 1, c, sl - 1, dim)
if (val === bw[idx]) {
nabo[nr_set++] = il[idx]
}
}
if (c < dim[1] - 1) {
const idx = this.idx(r, c + 1, sl - 1, dim)
if (val === bw[idx]) {
nabo[nr_set++] = il[idx]
}
}
}
if (conn === 26) {
if (r && c) {
const idx = this.idx(r - 1, c - 1, sl - 1, dim)
if (val === bw[idx]) {
nabo[nr_set++] = il[idx]
}
}
if (r < dim[0] - 1 && c) {
const idx = this.idx(r + 1, c - 1, sl - 1, dim)
if (val === bw[idx]) {
nabo[nr_set++] = il[idx]
}
}
if (r && c < dim[1] - 1) {
const idx = this.idx(r - 1, c + 1, sl - 1, dim)
if (val === bw[idx]) {
nabo[nr_set++] = il[idx]
}
}
if (r < dim[0] - 1 && c < dim[1] - 1) {
const idx = this.idx(r + 1, c + 1, sl - 1, dim)
if (val === bw[idx]) {
nabo[nr_set++] = il[idx]
}
}
}
if (nr_set) {
this.fill_tratab(tt, nabo, nr_set, tn)
return nabo[0]
} else {
return 0
}
} // check_previous_slice()
// provisionally label all voxels in volume
do_initial_labelling(bw, dim, conn) {
const naboPS = new Uint32Array(32)
const tn = new Uint32Array(32)
let label = 1
const kGrowArrayBy = 8192
let ttn = kGrowArrayBy
let tt = new Uint32Array(ttn).fill(0)
const il = new Uint32Array(dim[0] * dim[1] * dim[2]).fill(0)
const nabo = new Uint32Array(27)
for (let sl = 0; sl < dim[2]; sl++) {
for (let c = 0; c < dim[1]; c++) {
for (let r = 0; r < dim[0]; r++) {
let nr_set = 0
const val = bw[this.idx(r, c, sl, dim)]
if (val === 0) {
continue
}
nabo[0] = this.check_previous_slice(bw, il, r, c, sl, dim, conn, tt, naboPS, tn)
if (nabo[0]) {
nr_set += 1
}
if (conn >= 6) {
if (r) {
const idx = this.idx(r - 1, c, sl, dim)
if (val === bw[idx]) {
nabo[nr_set++] = il[idx]
}
}
if (c) {
const idx = this.idx(r, c - 1, sl, dim)
if (val === bw[idx]) {
nabo[nr_set++] = il[idx]
}
}
}
if (conn >= 18) {
if (c && r) {
const idx = this.idx(r - 1, c - 1, sl, dim)
if (val === bw[idx]) {
nabo[nr_set++] = il[idx]
}
}
if (c && r < dim[0] - 1) {
const idx = this.idx(r + 1, c - 1, sl, dim)
if (val === bw[idx]) {
nabo[nr_set++] = il[idx]
}
}
}
if (nr_set) {
il[this.idx(r, c, sl, dim)] = nabo[0]
this.fill_tratab(tt, nabo, nr_set, tn)
} else {
il[this.idx(r, c, sl, dim)] = label
if (label >= ttn) {
ttn += kGrowArrayBy
const ext = new Uint32Array(ttn)
ext.set(tt)
tt = ext
}
tt[label - 1] = label
label++
}
}
}
}
for (let i = 0; i < label - 1; i++) {
let j = i
while (tt[j] !== j + 1) {
j = tt[j] - 1
}
tt[i] = j + 1
}
return [label - 1, tt, il]
} // do_initial_labelling()
// translation table unifies a region that has been assigned multiple classes
fill_tratab(tt, nabo, nr_set, tn) {
// let cntr = 0
//tn.fill(0)
const INT_MAX = 2147483647
let ltn = INT_MAX
for (let i = 0; i < nr_set; i++) {
let j = nabo[i]
// cntr = 0
while (tt[j - 1] !== j) {
j = tt[j - 1]
/* cntr++
if (cntr > 100) {
console.log('\nOoh no!!')
break
} */
}
tn[i] = j
ltn = Math.min(ltn, j)
}
for (let i = 0; i < nr_set; i++) {
tt[tn[i] - 1] = ltn
}
} // fill_tratab()
// remove any residual gaps so label numbers are dense rather than sparse
translate_labels(il, dim, tt, ttn) {
const nvox = dim[0] * dim[1] * dim[2]
let ml = 0
const l = new Uint32Array(nvox).fill(0)
for (let i = 0; i < ttn; i++) {
ml = Math.max(ml, tt[i])
}
const fl = new Uint32Array(ml).fill(0)
let cl = 0
for (let i = 0; i < nvox; i++) {
if (il[i]) {
if (!fl[tt[il[i] - 1] - 1]) {
cl += 1
fl[tt[il[i] - 1] - 1] = cl
}
l[i] = fl[tt[il[i] - 1] - 1]
}
}
return [cl, l]
} // translate_labels()
// retain only the largest cluster for each region
largest_original_cluster_labels(bw, cl, ls) {
const nvox = bw.length
const ls2bw = new Uint32Array(cl + 1).fill(0)
const sumls = new Uint32Array(cl + 1).fill(0)
for (let i = 0; i < nvox; i++) {
const bwVal = bw[i]
const lsVal = ls[i]
ls2bw[lsVal] = bwVal
sumls[lsVal]++
}
let mxbw = 0
for (let i = 0; i < cl + 1; i++) {
const bwVal = ls2bw[i]
mxbw = Math.max(mxbw, bwVal)
// see if this is largest cluster of this bw-value
for (let j = 0; j < cl + 1; j++) {
if (j === i) {
continue
}
if (bwVal !== ls2bw[j]) {
continue
}
if (sumls[i] < sumls[j]) {
ls2bw[i] = 0
} else if (sumls[i] === sumls[j] && i < j) {
ls2bw[i] = 0
} // ties: arbitrary winner
}
}
const vxs = new Uint32Array(nvox).fill(0)
for (let i = 0; i < nvox; i++) {
vxs[i] = ls2bw[ls[i]]
}
return [mxbw, vxs]
}
// given a 3D image, return a clustered label map
// for an explanation and optimized C code see
// https://github.com/seung-lab/connected-components-3d
bwlabel(img, dim, conn = 26, binarize = false, onlyLargestClusterPerClass = false) {
const start = Date.now()
const nvox = dim[0] * dim[1] * dim[2]
const bw = new Uint32Array(nvox).fill(0)
if (![6, 18, 26].includes(conn)) {
console.log('bwlabel: conn must be 6, 18 or 26.')
return [0, bw]
}
if (dim[0] < 2 || dim[1] < 2 || dim[2] < 1) {
console.log('bwlabel: img must be 2 or 3-dimensional')
return [0, bw]
}
if (binarize) {
for (let i = 0; i < nvox; i++) {
if (img[i] !== 0.0) {
bw[i] = 1
}
}
} else {
bw.set(img)
}
let [ttn, tt, il] = this.do_initial_labelling(bw, dim, conn)
if (tt === undefined) {
tt = new Uint32Array(0)
}
const [cl, ls] = this.translate_labels(il, dim, tt, ttn)
console.log(conn + ' neighbor clustering into ' + cl + ' regions in ' + (Date.now() - start) + 'ms')
if (onlyLargestClusterPerClass) {
const [nbw, bwMx] = this.largest_original_cluster_labels(bw, cl, ls)
return [nbw, bwMx]
}
return [cl, ls]
} // bwlabel()
}