-
Notifications
You must be signed in to change notification settings - Fork 1
/
model_rum.py
215 lines (175 loc) · 7.16 KB
/
model_rum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#!usrbinenv python
from __future__ import print_function
import tensorflow as tf
import cv2
import sys
sys.path.append(game)
import wrapped_flappy_bird as game
import random
import numpy as np
from collections import deque
GAME = 'bird' # the name of the game being played for log files
ACTIONS = 2 # number of valid actions
GAMMA = 0.99 # decay rate of past observations
OBSERVE = 100000. # timesteps to observe before training
EXPLORE = 2000000. # frames over which to anneal epsilon
FINAL_EPSILON = 0.0001 # final value of epsilon
INITIAL_EPSILON = 0.0001 # starting value of epsilon
REPLAY_MEMORY = 50000 # number of previous transitions to remember
BATCH = 32 # size of minibatch
FRAME_PER_ACTION = 1
def weight_variable(shape)
initial = tf.truncated_normal(shape, stddev = 0.01)
return tf.Variable(initial)
def bias_variable(shape)
initial = tf.constant(0.01, shape = shape)
return tf.Variable(initial)
def conv2d(x, W, stride)
return tf.nn.conv2d(x, W, strides = [1, stride, stride, 1], padding = SAME)
def max_pool_2x2(x)
return tf.nn.max_pool(x, ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = SAME)
def createNetwork()
# network weights
W_conv1 = weight_variable([8, 8, 4, 32])
b_conv1 = bias_variable([32])
W_conv2 = weight_variable([4, 4, 32, 64])
b_conv2 = bias_variable([64])
W_conv3 = weight_variable([3, 3, 64, 64])
b_conv3 = bias_variable([64])
W_fc1 = weight_variable([1600, 512])
b_fc1 = bias_variable([512])
W_fc2 = weight_variable([512, ACTIONS])
b_fc2 = bias_variable([ACTIONS])
# input layer
s = tf.placeholder(float, [None, 80, 80, 4])
# hidden layers
h_conv1 = tf.nn.relu(conv2d(s, W_conv1, 4) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2, 2) + b_conv2)
#h_pool2 = max_pool_2x2(h_conv2)
h_conv3 = tf.nn.relu(conv2d(h_conv2, W_conv3, 1) + b_conv3)
#h_pool3 = max_pool_2x2(h_conv3)
#h_pool3_flat = tf.reshape(h_pool3, [-1, 256])
h_conv3_flat = tf.reshape(h_conv3, [-1, 1600])
h_fc1 = tf.nn.relu(tf.matmul(h_conv3_flat, W_fc1) + b_fc1)
# readout layer
readout = tf.matmul(h_fc1, W_fc2) + b_fc2
return s, readout, h_fc1
def trainNetwork(s, readout, h_fc1, sess)
# define the cost function
a = tf.placeholder(float, [None, ACTIONS])
y = tf.placeholder(float, [None])
readout_action = tf.reduce_sum(tf.multiply(readout, a), reduction_indices=1)
cost = tf.reduce_mean(tf.square(y - readout_action))
train_step = tf.train.AdamOptimizer(1e-6).minimize(cost)
# open up a game state to communicate with emulator
game_state = game.GameState()
# store the previous observations in replay memory
D = deque()
# printing
a_file = open(logs_ + GAME + readout.txt, 'w')
h_file = open(logs_ + GAME + hidden.txt, 'w')
# get the first state by doing nothing and preprocess the image to 80x80x4
do_nothing = np.zeros(ACTIONS)
do_nothing[0] = 1
x_t, r_0, terminal = game_state.frame_step(do_nothing)
x_t = cv2.cvtColor(cv2.resize(x_t, (80, 80)), cv2.COLOR_BGR2GRAY)
ret, x_t = cv2.threshold(x_t,1,255,cv2.THRESH_BINARY)
s_t = np.stack((x_t, x_t, x_t, x_t), axis=2)
# saving and loading networks
saver = tf.train.Saver()
sess.run(tf.initialize_all_variables())
checkpoint = tf.train.get_checkpoint_state(saved_networks)
if checkpoint and checkpoint.model_checkpoint_path
saver.restore(sess, checkpoint.model_checkpoint_path)
print(Successfully loaded, checkpoint.model_checkpoint_path)
else
print(Could not find old network weights)
# start training
epsilon = INITIAL_EPSILON
t = 0
while flappy bird != angry bird
# choose an action epsilon greedily
readout_t = readout.eval(feed_dict={s [s_t]})[0]
a_t = np.zeros([ACTIONS])
action_index = 0
if t % FRAME_PER_ACTION == 0
if random.random() = epsilon
print(----------Random Action----------)
action_index = random.randrange(ACTIONS)
a_t[random.randrange(ACTIONS)] = 1
else
action_index = np.argmax(readout_t)
a_t[action_index] = 1
else
a_t[0] = 1 # do nothing
# scale down epsilon
if epsilon FINAL_EPSILON and t OBSERVE
epsilon -= (INITIAL_EPSILON - FINAL_EPSILON) EXPLORE
# run the selected action and observe next state and reward
x_t1_colored, r_t, terminal = game_state.frame_step(a_t)
x_t1 = cv2.cvtColor(cv2.resize(x_t1_colored, (80, 80)), cv2.COLOR_BGR2GRAY)
ret, x_t1 = cv2.threshold(x_t1, 1, 255, cv2.THRESH_BINARY)
x_t1 = np.reshape(x_t1, (80, 80, 1))
#s_t1 = np.append(x_t1, s_t[,,1], axis = 2)
s_t1 = np.append(x_t1, s_t[, , 3], axis=2)
# store the transition in D
D.append((s_t, a_t, r_t, s_t1, terminal))
if len(D) REPLAY_MEMORY
D.popleft()
# only train if done observing
if t OBSERVE
# sample a minibatch to train on
minibatch = random.sample(D, BATCH)
# get the batch variables
s_j_batch = [d[0] for d in minibatch]
a_batch = [d[1] for d in minibatch]
r_batch = [d[2] for d in minibatch]
s_j1_batch = [d[3] for d in minibatch]
y_batch = []
readout_j1_batch = readout.eval(feed_dict = {s s_j1_batch})
for i in range(0, len(minibatch))
terminal = minibatch[i][4]
# if terminal, only equals reward
if terminal
y_batch.append(r_batch[i])
else
y_batch.append(r_batch[i] + GAMMA np.max(readout_j1_batch[i]))
# perform gradient step
train_step.run(feed_dict = {
y y_batch,
a a_batch,
s s_j_batch}
)
# update the old values
s_t = s_t1
t += 1
# save progress every 10000 iterations
if t % 10000 == 0
saver.save(sess, 'saved_networks' + GAME + '-dqn', global_step = t)
# print info
state =
if t = OBSERVE
state = observe
elif t OBSERVE and t = OBSERVE + EXPLORE
state = explore
else
state = train
print(TIMESTEP, t, STATE, state,
EPSILON, epsilon, ACTION, action_index, REWARD, r_t,
Q_MAX %e % np.max(readout_t))
# write info to files
'''
if t % 10000 = 100
a_file.write(,.join([str(x) for x in readout_t]) + 'n')
h_file.write(,.join([str(x) for x in h_fc1.eval(feed_dict={s[s_t]})[0]]) + 'n')
cv2.imwrite(logs_tetrisframe + str(t) + .png, x_t1)
'''
def playGame()
sess = tf.InteractiveSession()
s, readout, h_fc1 = createNetwork()
trainNetwork(s, readout, h_fc1, sess)
def main()
playGame()
if __name__ == __main__
main()