This repository contains the scripts that are used for analysing FakeNewsPerception dataset.
There are two datasets.
- Processed dataset (172 MB): https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/C1UD2A
- Raw dataset (23 GB): We obtained the raw data from the authors [1]
The raw eye tracking data are recorded and exported using the eye tracker computer (Tobii Pro-Spectrum) and Tobii Pro-Lab software.
- Python Version: 3.9
- Install pandas:
pip install pandas
Here, we read the raw data and process them.
- filter out mouse data
- remove invalid data
- replace comma with decimal point
- process invalid eye data
- split data by stimulus
- remove unwanted columns
- Run
process_raw_data.py
- Input Data: "Data/RawData"
- Output Data: "Data/ProcessedEyeMovementData"
Prior to sending the data to RAEMAP pipeline we,
- normalize the data using resolution
- generate mean x, mean y using Gaze point x and y values for left and right eye.
- generate mean pupil diameter using left and right pupil diameters
- Run
normalize_eye_movements.py
- Input Data: "Data/ProcessedEyeMovementData"
- Output Data: "Data/ReformattedData"
[1] Ömer Sümer, Efe Bozkir, Thomas Kübler, Sven Grüner, Sonja Utz, and Enkelejda Kasneci. 2021. FakeNewsPerception: An eye movement dataset on the perceived believability of news stories. Data in Brief 35 (2021), 106909. https://doi.org/10.1016/j.dib.2021.106909