forked from Hyperparticle/one-pixel-attack-keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
helper.py
232 lines (174 loc) · 7.53 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# CIFAR - 10
import pickle
import numpy as np
from keras.datasets import cifar10
from keras.utils import np_utils
from matplotlib import pyplot as plt
import pandas as pd
import requests
from tqdm import tqdm
def perturb_image(xs, img):
# If this function is passed just one perturbation vector,
# pack it in a list to keep the computation the same
if xs.ndim < 2:
xs = np.array([xs])
# Copy the image n == len(xs) times so that we can
# create n new perturbed images
tile = [len(xs)] + [1] * (xs.ndim + 1)
imgs = np.tile(img, tile)
# Make sure to floor the members of xs as int types
xs = xs.astype(int)
for x, img in zip(xs, imgs):
# Split x into an array of 5-tuples (perturbation pixels)
# i.e., [[x,y,r,g,b], ...]
pixels = np.split(x, len(x) // 5)
for pixel in pixels:
# At each pixel's x,y position, assign its rgb value
x_pos, y_pos, *rgb = pixel
img[x_pos, y_pos] = rgb
return imgs
def plot_image(image, label_true=None, class_names=None, label_pred=None):
if image.ndim == 4 and image.shape[0] == 1:
image = image[0]
plt.grid()
plt.imshow(image.astype(np.uint8))
# Show true and predicted classes
if label_true is not None and class_names is not None:
labels_true_name = class_names[label_true]
if label_pred is None:
xlabel = "True: " + labels_true_name
else:
# Name of the predicted class
labels_pred_name = class_names[label_pred]
xlabel = "True: " + labels_true_name + "\nPredicted: " + labels_pred_name
# Show the class on the x-axis
plt.xlabel(xlabel)
plt.xticks([]) # Remove ticks from the plot
plt.yticks([])
plt.show() # Show the plot
def plot_images(images, labels_true, class_names, labels_pred=None,
confidence=None, titles=None):
assert len(images) == len(labels_true)
# Create a figure with sub-plots
fig, axes = plt.subplots(3, 3, figsize=(10, 10))
# Adjust the vertical spacing
hspace = 0.2
if labels_pred is not None:
hspace += 0.2
if titles is not None:
hspace += 0.2
fig.subplots_adjust(hspace=hspace, wspace=0.0)
for i, ax in enumerate(axes.flat):
# Fix crash when less than 9 images
if i < len(images):
# Plot the image
ax.imshow(images[i])
# Name of the true class
labels_true_name = class_names[labels_true[i]]
# Show true and predicted classes
if labels_pred is None:
xlabel = "True: " + labels_true_name
else:
# Name of the predicted class
labels_pred_name = class_names[labels_pred[i]]
xlabel = "True: " + labels_true_name + "\nPred: " + labels_pred_name
if (confidence is not None):
xlabel += " (" + "{0:.1f}".format(confidence[i] * 100) + "%)"
# Show the class on the x-axis
ax.set_xlabel(xlabel)
if titles is not None:
ax.set_title(titles[i])
# Remove ticks from the plot
ax.set_xticks([])
ax.set_yticks([])
# Show the plot
plt.show()
def plot_model(model_details):
# Create sub-plots
fig, axs = plt.subplots(1, 2, figsize=(15, 5))
# Summarize history for accuracy
axs[0].plot(range(1, len(model_details.history['acc']) + 1), model_details.history['acc'])
axs[0].plot(range(1, len(model_details.history['val_acc']) + 1), model_details.history['val_acc'])
axs[0].set_title('Model Accuracy')
axs[0].set_ylabel('Accuracy')
axs[0].set_xlabel('Epoch')
axs[0].set_xticks(np.arange(1, len(model_details.history['acc']) + 1), len(model_details.history['acc']) / 10)
axs[0].legend(['train', 'val'], loc='best')
# Summarize history for loss
axs[1].plot(range(1, len(model_details.history['loss']) + 1), model_details.history['loss'])
axs[1].plot(range(1, len(model_details.history['val_loss']) + 1), model_details.history['val_loss'])
axs[1].set_title('Model Loss')
axs[1].set_ylabel('Loss')
axs[1].set_xlabel('Epoch')
axs[1].set_xticks(np.arange(1, len(model_details.history['loss']) + 1), len(model_details.history['loss']) / 10)
axs[1].legend(['train', 'val'], loc='best')
# Show the plot
plt.show()
def visualize_attack(df, class_names):
_, (x_test, _) = cifar10.load_data()
results = df[df.success].sample(9)
z = zip(results.perturbation, x_test[results.image])
images = np.array([perturb_image(p, img)[0]
for p, img in z])
labels_true = np.array(results.true)
labels_pred = np.array(results.predicted)
titles = np.array(results.model)
# Plot the first 9 images.
plot_images(images=images,
labels_true=labels_true,
class_names=class_names,
labels_pred=labels_pred,
titles=titles)
def attack_stats(df, models, network_stats):
stats = []
for model in models:
val_accuracy = np.array(network_stats[network_stats.name == model.name].accuracy)[0]
m_result = df[df.model == model.name]
pixels = list(set(m_result.pixels))
for pixel in pixels:
p_result = m_result[m_result.pixels == pixel]
success_rate = len(p_result[p_result.success]) / len(p_result)
stats.append([model.name, val_accuracy, pixel, success_rate])
return pd.DataFrame(stats, columns=['model', 'accuracy', 'pixels', 'attack_success_rate'])
def evaluate_models(models, x_test, y_test):
correct_imgs = []
network_stats = []
for model in models:
print('Evaluating', model.name)
predictions = model.predict(x_test)
correct = [[model.name, i, label, np.max(pred), pred]
for i, (label, pred)
in enumerate(zip(y_test[:, 0], predictions))
if label == np.argmax(pred)]
accuracy = len(correct) / len(x_test)
correct_imgs += correct
network_stats += [[model.name, accuracy, model.count_params()]]
return network_stats, correct_imgs
def load_results():
with open('networks/results/untargeted_results.pkl', 'rb') as file:
untargeted = pickle.load(file)
with open('networks/results/targeted_results.pkl', 'rb') as file:
targeted = pickle.load(file)
return untargeted, targeted
def checkpoint(results, targeted=False):
filename = 'targeted' if targeted else 'untargeted'
with open('networks/results/' + filename + '_results.pkl', 'wb') as file:
pickle.dump(results, file)
def download_from_url(url, dst):
"""
@param: url to download file
@param: dst place to put the file
"""
# Streaming, so we can iterate over the response.
r = requests.get(url, stream=True)
with open(dst, 'wb') as f:
for data in tqdm(r.iter_content(), unit='B', unit_scale=True):
f.write(data)
# def load_imagenet():
# with open('data/imagenet_class_index.json', 'r') as f:
# class_names = json.load(f)
# class_names = pd.DataFrame([[i,wid,name] for i,(wid,name) in class_names.items()], columns=['id', 'wid', 'text'])
# wid_to_id = {wid:int(i) for i,wid in class_names[['id', 'wid']].as_matrix()}
# imagenet_urls = pd.read_csv('data/imagenet_urls.txt', delimiter='\t', names=['label', 'url'])
# imagenet_urls['label'], imagenet_urls['id'] = zip(*imagenet_urls.label.apply(lambda x: x.split('_')))
# imagenet_urls.label = imagenet_urls.label.apply(lambda wid: wid_to_id[wid])