Early days of a lightweight MLIR Python frontend with support for PyTorch (through Torch-MLIR but without a true dependency on PyTorch itself).
Just
pip install -r requirements.txt
pip install . -v
and you're good to go.
examples/minimal.py lowers
class MyConv2d(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(3, 1, 3)
def forward(self, x):
y = self.conv(x)
z = y + y
w = z * z
return w
to
module attributes {pi.module_name = "MyConv2d"} {
func.func @forward(%arg0: !torch.vtensor<[?,?,?,?],f32>) -> !torch.vtensor<[?,1,?,?],f32> {
%false = torch.constant.bool false
%none = torch.constant.none
%int3 = torch.constant.int 3
%int0 = torch.constant.int 0
%int1 = torch.constant.int 1
%0 = torch.prim.ListConstruct %int1 : (!torch.int) -> !torch.list<int>
%1 = torch.aten.empty.memory_format %0, %none, %none, %none, %none, %none : !torch.list<int>, !torch.none, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[1],f32>
%2 = torch.prim.ListConstruct %int1, %int3, %int3, %int3 : (!torch.int, !torch.int, !torch.int, !torch.int) -> !torch.list<int>
%3 = torch.aten.empty.memory_format %2, %none, %none, %none, %none, %none : !torch.list<int>, !torch.none, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[1,3,3,3],f32>
%4 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<int>
%5 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<int>
%6 = torch.prim.ListConstruct : () -> !torch.list<int>
%7 = torch.aten.convolution %arg0, %3, %1, %4, %5, %4, %false, %6, %int1 :
!torch.vtensor<[?,?,?,?],f32>,
!torch.vtensor<[1,3,3,3],f32>,
!torch.vtensor<[1],f32>,
!torch.list<int>,
!torch.list<int>,
!torch.list<int>,
!torch.bool,
!torch.list<int>,
!torch.int -> !torch.vtensor<[?,1,?,?],f32>
%8 = torch.aten.add.Tensor %7, %7, %int1 : !torch.vtensor<[?,1,?,?],f32>, !torch.vtensor<[?,1,?,?],f32>, !torch.int -> !torch.vtensor<[?,1,?,?],f32>
%9 = torch.aten.mul.Tensor %8, %8 : !torch.vtensor<[?,1,?,?],f32>, !torch.vtensor<[?,1,?,?],f32> -> !torch.vtensor<[?,1,?,?],f32>
return %9 : !torch.vtensor<[?,1,?,?],f32>
}
}
In addition, we have several full end-to-end model examples, including ResNet18, InceptionV3, MobileNetV3.
In general, PI is very alpha; to get a rough idea of the current status check the latest tests.
Currently, we're passing ~650 out of 786 of Torch-MLIR's test-suite (torch-mlir==20230127.731
).
Spin up a venv (or conda environment) with pip install -r requirements.txt
and configure CMake with
cmake \
-DCMAKE_INSTALL_PREFIX=$PI_SRC_DIR/pi \
-DPython3_EXECUTABLE=$(which python) \
-S $PI_SRC_DIR \
-B $PI_BUILD_DIR
where $PI_SRC_DIR
is the path to the checkout of this repo and $PI_BUILD_DIR
is where you want to build into. Then
cmake --build $PI_BUILD_DIR --target install
which will install _mlir_libs
, dialects
, and runtime
underneath $PI_SRC_DIR/pi/mlir
.
Then add $PI_SRC_DIR
to your PYTHONPATH
and you're good to go. E.g.,
PYTHONPATH=$PI_SRC_DIR pytest $PI_SRC_DIR/tests/unit/*
Why build the install
target? Because you can't do a pip install . -e
(editable install) because of the pybind/C-extension so this is the next best thing.
Note, if you're using CLion and you're getting something like
Process finished with exit code 127
you need to disable Add content roots to PYTHONPATH
and Add source roots to PYTHONPATH
in Run/Debug Configurations.
If you're fancy you can add these CMake flags:
-DCMAKE_EXE_LINKER_FLAGS_INIT="-fuse-ld=lld"
-DCMAKE_MODULE_LINKER_FLAGS_INIT="-fuse-ld=lld"
-DCMAKE_SHARED_LINKER_FLAGS_INIT="-fuse-ld=lld"
-DCMAKE_C_COMPILER_LAUNCHER=ccache
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache