-
Notifications
You must be signed in to change notification settings - Fork 172
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[SDXL] Add SDXL pipeline to SHARK (#1941)
* [SDXL] Add SDXL pipeline to SHARK -- This commit adds SDXL pipeline to SHARK. Signed-off-by: Abhishek Varma <abhishek@nod-labs.com> * (SDXL) Fix --ondemand and vae scale factor use, and fix VAE flags. --------- Signed-off-by: Abhishek Varma <abhishek@nod-labs.com> Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com>
- Loading branch information
1 parent
ff15fd7
commit a1b7110
Showing
13 changed files
with
1,451 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
import torch | ||
import time | ||
from apps.stable_diffusion.src import ( | ||
args, | ||
Text2ImageSDXLPipeline, | ||
get_schedulers, | ||
set_init_device_flags, | ||
utils, | ||
clear_all, | ||
save_output_img, | ||
) | ||
|
||
|
||
def main(): | ||
if args.clear_all: | ||
clear_all() | ||
|
||
# TODO: prompt_embeds and text_embeds form base_model.json requires fixing | ||
args.precision = "fp16" | ||
args.height = 1024 | ||
args.width = 1024 | ||
args.max_length = 77 | ||
args.scheduler = "DDIM" | ||
print( | ||
"Using default supported configuration for SDXL :-\nprecision=fp16, width*height= 1024*1024, max_length=77 and scheduler=DDIM" | ||
) | ||
dtype = torch.float32 if args.precision == "fp32" else torch.half | ||
cpu_scheduling = not args.scheduler.startswith("Shark") | ||
set_init_device_flags() | ||
schedulers = get_schedulers(args.hf_model_id) | ||
scheduler_obj = schedulers[args.scheduler] | ||
seed = args.seed | ||
txt2img_obj = Text2ImageSDXLPipeline.from_pretrained( | ||
scheduler=scheduler_obj, | ||
import_mlir=args.import_mlir, | ||
model_id=args.hf_model_id, | ||
ckpt_loc=args.ckpt_loc, | ||
precision=args.precision, | ||
max_length=args.max_length, | ||
batch_size=args.batch_size, | ||
height=args.height, | ||
width=args.width, | ||
use_base_vae=args.use_base_vae, | ||
use_tuned=args.use_tuned, | ||
custom_vae=args.custom_vae, | ||
low_cpu_mem_usage=args.low_cpu_mem_usage, | ||
debug=args.import_debug if args.import_mlir else False, | ||
use_lora=args.use_lora, | ||
use_quantize=args.use_quantize, | ||
ondemand=args.ondemand, | ||
) | ||
|
||
seeds = utils.batch_seeds(seed, args.batch_count, args.repeatable_seeds) | ||
for current_batch in range(args.batch_count): | ||
start_time = time.time() | ||
generated_imgs = txt2img_obj.generate_images( | ||
args.prompts, | ||
args.negative_prompts, | ||
args.batch_size, | ||
args.height, | ||
args.width, | ||
args.steps, | ||
args.guidance_scale, | ||
seeds[current_batch], | ||
args.max_length, | ||
dtype, | ||
args.use_base_vae, | ||
cpu_scheduling, | ||
args.max_embeddings_multiples, | ||
) | ||
total_time = time.time() - start_time | ||
text_output = f"prompt={args.prompts}" | ||
text_output += f"\nnegative prompt={args.negative_prompts}" | ||
text_output += ( | ||
f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}" | ||
) | ||
text_output += f"\nscheduler={args.scheduler}, device={args.device}" | ||
text_output += ( | ||
f"\nsteps={args.steps}, guidance_scale={args.guidance_scale}," | ||
) | ||
text_output += ( | ||
f"seed={seeds[current_batch]}, size={args.height}x{args.width}" | ||
) | ||
text_output += ( | ||
f", batch size={args.batch_size}, max_length={args.max_length}" | ||
) | ||
# TODO: if using --batch_count=x txt2img_obj.log will output on each display every iteration infos from the start | ||
text_output += txt2img_obj.log | ||
text_output += f"\nTotal image generation time: {total_time:.4f}sec" | ||
|
||
save_output_img(generated_imgs[0], seed) | ||
print(text_output) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.