-
Notifications
You must be signed in to change notification settings - Fork 12
/
benchmark.py
820 lines (671 loc) · 35.1 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
# Copyright (c) Microsoft Corporation. All rights reserved.
# Copyright 2018 The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Benchmarking the inference of pretrained transformer models.
PyTorch/TorchScript benchmark is based on https://github.com/huggingface/transformers/blob/master/examples/benchmarks.py.
One difference is that random input_ids is generated in this benchmark.
For onnxruntime, this script will convert a pretrained model to ONNX, and optimize it when -o parameter is used.
Example commands:
Export all models to ONNX, optimize and validate them:
python benchmark.py -b 0 -o -v -i 1 2 3
Run OnnxRuntime on GPU for all models:
python benchmark.py -g
Run OnnxRuntime on GPU for all models with fp32 optimization:
python benchmark.py -g -o
Run OnnxRuntime on GPU with fp16 optimization:
python benchmark.py -g -o -p "fp16"
Run TorchScript on GPU for all models:
python benchmark.py -e torchscript -g
Run TorchScript on GPU for all models with fp16:
python benchmark.py -e torchscript -g -p "fp16"
Run ONNXRuntime and TorchScript on CPU for all models with quantization:
python benchmark.py -e torchscript onnxruntime -p "int8" -o
It is recommended to use run_benchmark.sh to launch benchmark.
"""
import argparse
import logging
import timeit
from datetime import datetime
import numpy
shark_installed = True
try:
from shark.shark_runner import SharkInference
except ImportError:
shark_installed = False
import os
import psutil
import onnx
from enum import Enum
from transformers import AutoModelForSequenceClassification
from benchmark_helper import (create_onnxruntime_session, Precision, setup_logger, get_latency_result, output_details,
output_summary, output_fusion_statistics, inference_ort, inference_ort_with_io_binding,
allocateOutputBuffers)
from quantize_helper import QuantizeHelper
from onnx_exporter import create_onnxruntime_input, load_pretrained_model, export_onnx_model_from_pt, export_onnx_model_from_tf
logger = logging.getLogger('')
from huggingface_models import MODELS, MODEL_CLASSES
cpu_count = psutil.cpu_count(logical=False)
# Set OMP environment variable before importing onnxruntime or torch.
if "OMP_NUM_THREADS" not in os.environ:
os.environ["OMP_NUM_THREADS"] = str(cpu_count)
import torch
from transformers import (AutoConfig, AutoTokenizer, AutoModel, GPT2Model, LxmertConfig)
def run_onnxruntime(use_gpu, model_names, model_class, precision, num_threads, batch_sizes, sequence_lengths,
repeat_times, input_counts, optimize_onnx, validate_onnx, cache_dir, onnx_dir, verbose, overwrite,
disable_ort_io_binding, use_raw_attention_mask, model_fusion_statistics, model_source):
import onnxruntime
results = []
if use_gpu and ('CUDAExecutionProvider' not in onnxruntime.get_available_providers()):
logger.error(
"Please install onnxruntime-gpu package instead of onnxruntime, and use a machine with GPU for testing gpu performance."
)
return results
for model_name in model_names:
all_input_names = MODELS[model_name][0]
for num_inputs in input_counts:
if num_inputs > len(all_input_names):
break
input_names = all_input_names[:num_inputs]
if 'pt' in model_source:
with torch.no_grad():
onnx_model_file, is_valid_onnx_model, vocab_size, max_sequence_length = export_onnx_model_from_pt(
model_name, MODELS[model_name][1], MODELS[model_name][2], MODELS[model_name][3], model_class,
cache_dir, onnx_dir, input_names, use_gpu, precision, optimize_onnx, validate_onnx,
use_raw_attention_mask, overwrite, model_fusion_statistics)
if 'tf' in model_source:
onnx_model_file, is_valid_onnx_model, vocab_size, max_sequence_length = export_onnx_model_from_tf(
model_name, MODELS[model_name][1], MODELS[model_name][2], MODELS[model_name][3], model_class,
cache_dir, onnx_dir, input_names, use_gpu, precision, optimize_onnx, validate_onnx,
use_raw_attention_mask, overwrite, model_fusion_statistics)
if not is_valid_onnx_model:
continue
ort_session = create_onnxruntime_session(onnx_model_file,
use_gpu,
enable_all_optimization=True,
num_threads=num_threads,
verbose=verbose)
if ort_session is None:
continue
ort_output_names = [node_arg.name for node_arg in ort_session.get_outputs()]
output_buffers = []
device = "cuda" if use_gpu else "cpu"
config = AutoConfig.from_pretrained(model_name, cache_dir=cache_dir)
max_last_state_size = numpy.prod(
[max(batch_sizes), max(sequence_lengths),
max(vocab_size, config.hidden_size)])
max_pooler_size = numpy.prod([max(batch_sizes), config.hidden_size])
for batch_size in batch_sizes:
if batch_size <= 0:
continue
for sequence_length in sequence_lengths:
if max_sequence_length is not None and sequence_length > max_sequence_length:
continue
input_value_type = numpy.int64 if 'pt' in model_source else numpy.int32
ort_inputs = create_onnxruntime_input(vocab_size, batch_size, sequence_length, input_names, config,
input_value_type)
result_template = {
"engine": "onnxruntime",
"version": onnxruntime.__version__,
"device": device,
"optimizer": optimize_onnx,
"precision": precision,
"io_binding": not disable_ort_io_binding,
"model_name": model_name,
"inputs": num_inputs,
"threads": num_threads,
"batch_size": batch_size,
"sequence_length": sequence_length,
"datetime": str(datetime.now()),
}
logger.info("Run onnxruntime on {} with input shape {}".format(model_name,
[batch_size, sequence_length]))
if disable_ort_io_binding:
result = inference_ort(ort_session, ort_inputs, result_template, repeat_times, batch_size)
else:
# Get output sizes from a dummy ort run
ort_outputs = ort_session.run(ort_output_names, ort_inputs)
output_buffer_max_sizes = [max_last_state_size]
for i in range(len(ort_outputs)):
if i == 2 and MODELS[model_name][3] == "gpt":
# past state output max size
output_buffer_max_sizes.append(max_pooler_size)
else:
output_buffer_max_sizes.append(max_last_state_size)
data_type = numpy.longlong if 'pt' in model_source else numpy.intc
result = inference_ort_with_io_binding(ort_session, ort_inputs, result_template, repeat_times,
ort_output_names, ort_outputs, output_buffers,
output_buffer_max_sizes, batch_size, device, data_type)
logger.info(result)
results.append(result)
return results
def run_pytorch(use_gpu, model_names, model_class, precision, num_threads, batch_sizes, sequence_lengths, repeat_times,
torchscript, cache_dir, verbose):
results = []
if use_gpu and not torch.cuda.is_available():
logger.error("Please install PyTorch with Cuda, and use a machine with GPU for testing gpu performance.")
return results
torch.set_grad_enabled(False)
for model_name in model_names:
config = AutoConfig.from_pretrained(model_name, torchscript=torchscript, cache_dir=cache_dir)
model = load_pretrained_model(model_name, config=config, cache_dir=cache_dir, custom_model_class=model_class)
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=cache_dir)
max_input_size = tokenizer.max_model_input_sizes[
model_name] if model_name in tokenizer.max_model_input_sizes else 1024
logger.debug(f"Model {model}")
logger.debug(f"Number of parameters {model.num_parameters()}")
if precision == Precision.FLOAT16:
model.half()
device = torch.device("cuda:0" if use_gpu else "cpu")
model.to(device)
if precision == Precision.INT8:
model = QuantizeHelper.quantize_torch_model(model)
for batch_size in batch_sizes:
if batch_size <= 0:
continue
for sequence_length in sequence_lengths:
if max_input_size is not None and sequence_length > max_input_size:
continue
logger.info("Run PyTorch on {} with input shape {}".format(model_name, [batch_size, sequence_length]))
input_ids = torch.randint(low=0,
high=config.vocab_size - 1,
size=(batch_size, sequence_length),
dtype=torch.long,
device=device)
try:
inference = torch.jit.trace(model, input_ids) if torchscript else model
inference(input_ids)
runtimes = timeit.repeat(lambda: inference(input_ids), repeat=repeat_times, number=1)
result = {
"engine": "torchscript" if torchscript else "torch",
"version": torch.__version__,
"device": "cuda" if use_gpu else "cpu",
"optimizer": "",
"precision": precision,
"io_binding": "",
"model_name": model_name,
"inputs": 1,
"threads": num_threads,
"batch_size": batch_size,
"sequence_length": sequence_length,
"datetime": str(datetime.now()),
}
result.update(get_latency_result(runtimes, batch_size))
logger.info(result)
results.append(result)
except RuntimeError as e:
logger.exception(e)
torch.cuda.empty_cache()
return results
class ModuleFactory(torch.nn.Module):
def __init__(self, model_name):
super().__init__()
self.model = AutoModelForSequenceClassification.from_pretrained(
"microsoft/MiniLM-L12-H384-uncased", # The pretrained model.
num_labels=
2, # The number of output labels--2 for binary classification.
output_attentions=
False, # Whether the model returns attentions weights.
output_hidden_states=
False, # Whether the model returns all hidden-states.
torchscript=True,
)
def forward(self, tokens):
return self.model.forward(tokens)[0]
def run_shark(use_gpu, model_names, model_class, precision, num_threads,
batch_sizes, sequence_lengths, repeat_times, torchscript,
cache_dir, verbose):
results = []
for model_name in model_names:
config = AutoConfig.from_pretrained(model_name,
torchscript=torchscript,
cache_dir=cache_dir)
model = load_pretrained_model(model_name,
config=config,
cache_dir=cache_dir,
custom_model_class=model_class)
tokenizer = AutoTokenizer.from_pretrained(model_name,
cache_dir=cache_dir)
max_input_size = tokenizer.max_model_input_sizes[
model_name] if model_name in tokenizer.max_model_input_sizes else 1024
logger.debug(f"Model {model}")
logger.debug(f"Number of parameters {model.num_parameters()}")
if precision == Precision.FLOAT16:
print("FLOAT16 Not yet supported by shark")
return []
if precision == Precision.INT8:
print("INT8 Not yet supported by shark")
return []
device = torch.device("cuda:0" if use_gpu else "cpu")
for batch_size in batch_sizes:
if batch_size <= 0:
continue
for sequence_length in sequence_lengths:
input_ids = torch.randint(low=0,
high=config.vocab_size - 1,
size=(batch_size, sequence_length),
dtype=torch.long,
device=device)
shark_module = SharkInference(
ModuleFactory(model_name), (input_ids, ),
device="gpu" if use_gpu else "cpu",
jit_trace=True)
try:
inference = shark_module.forward
inference((input_ids, ))
runtimes = timeit.repeat(lambda: shark_module.forward(
(input_ids, )),
repeat=repeat_times,
number=1)
result = {
"engine": "shark",
"version":
"1.0", #TODO: replace with shark version when shark is versioned
"device": "cuda" if use_gpu else "cpu",
"optimizer": "",
"precision": precision,
"io_binding": "",
"model_name": model_name,
"inputs": 1,
"threads": num_threads,
"batch_size": batch_size,
"sequence_length": sequence_length,
"datetime": str(datetime.now()),
}
result.update(get_latency_result(runtimes, batch_size))
logger.info(result)
results.append(result)
except RuntimeError as e:
logger.exception(e)
torch.cuda.empty_cache()
return results
def run_iree(use_gpu, model_names, model_class, precision, num_threads,
batch_sizes, sequence_lengths, repeat_times, cache_dir, verbose):
results = []
from iree import runtime as ireert
from iree.compiler import tf as tfc
from iree.compiler import compile_str
import sys
from absl import app
import numpy as np
import os
import tempfile
import tensorflow as tf
import time
from transformers import BertModel, BertTokenizer, TFBertModel
# TODO: Adjust run_iree S.T it can run on multiple batch_szs and sequence_lens
MAX_SEQUENCE_LENGTH = sequence_lengths[0]
BATCH_SIZE = 1
# Create a set of 2-dimensional inputs
bert_input = [tf.TensorSpec(shape=[BATCH_SIZE,MAX_SEQUENCE_LENGTH],dtype=tf.int32),
tf.TensorSpec(shape=[BATCH_SIZE,MAX_SEQUENCE_LENGTH], dtype=tf.int32),
tf.TensorSpec(shape=[BATCH_SIZE,MAX_SEQUENCE_LENGTH], dtype=tf.int32)]
class BertModule(tf.Module):
def __init__(self):
super(BertModule, self).__init__()
# Create a BERT trainer with the created network.
self.m = TFBertModel.from_pretrained("microsoft/MiniLM-L12-H384-uncased", from_pt=True)
# Invoke the trainer model on the inputs. This causes the layer to be built.
self.m.predict = lambda x,y,z: self.m.call(input_ids=x, attention_mask=y, token_type_ids=z, training=False)
@tf.function(input_signature=bert_input)
def predict(self, input_ids, attention_mask, token_type_ids):
return self.m.predict(input_ids, attention_mask, token_type_ids)
# Prepping Data
tokenizer = BertTokenizer.from_pretrained("microsoft/MiniLM-L12-H384-uncased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, padding='max_length', truncation=True, max_length=MAX_SEQUENCE_LENGTH)
for key in encoded_input:
encoded_input[key] = tf.expand_dims(tf.convert_to_tensor(encoded_input[key]),0)
# Compile the model using IREE
backend = "llvm-cpu"
args = ["--iree-llvm-target-cpu-features=host"]
backend_config = "local-task"
if use_gpu:
backend = "cuda"
backend_config = "cuda"
args = ["--iree-cuda-llvm-target-arch=sm_80", "--iree-hal-cuda-disable-loop-nounroll-wa"]
ireert.flags.FUNCTION_INPUT_VALIDATION = False
ireert.flags.parse_flags("--cuda_allow_inline_execution")
compiler_module = tfc.compile_module(BertModule(), exported_names = ["predict"], import_only=True)
#Dump module
ARITFACTS_DIR = os.getcwd()
mlir_path = os.path.join(ARITFACTS_DIR, "model.mlir")
with open(mlir_path, "wt") as output_file:
output_file.write(compiler_module.decode('utf-8'))
print(f"Wrote MLIR to path '{mlir_path}'")
flatbuffer_blob = compile_str(compiler_module, input_type="mhlo", target_backends=[backend], extra_args=args)
#flatbuffer_blob = compile_str(compiler_module, target_backends=[backend])
# Save module as MLIR file in a directory
config = ireert.Config(backend_config)
vm_module = ireert.VmModule.from_flatbuffer(config.vm_instance, flatbuffer_blob)
#tracer = ireert.Tracer(os.getcwd())
# TODO: Remove printing of "Tracing module.predict"
ctx = ireert.SystemContext(config=config)
ctx.add_vm_module(vm_module)
BertCompiled = ctx.modules.module
#result = BertCompiled.predict(encoded_input["input_ids"], encoded_input["attention_mask"], encoded_input["token_type_ids"])
#print(result)
#end iree
# Setting up input on host and moving to device.
host_inputs =[encoded_input["input_ids"], encoded_input["attention_mask"], encoded_input["token_type_ids"]]
if use_gpu:
device_inputs = [ireert.asdevicearray(config.device, a) for a in host_inputs]
else:
device_inputs = host_inputs
try:
bert_predict = BertCompiled.predict
runtimes = timeit.repeat(lambda: bert_predict(*device_inputs), repeat=repeat_times, number=1)
result = {
"engine": "MLIR",
"version": tf.__version__,
"device": "cuda" if use_gpu else "cpu",
"optimizer": "",
"precision": precision,
"io_binding": "",
"model_name": "microsoft/MiniLM-L12-H384-uncased",
"inputs": 1,
"threads": 1,
"batch_size": batch_sizes[0],
"sequence_length": sequence_lengths[0],
"datetime": str(datetime.now()),
}
result.update(get_latency_result(runtimes, batch_sizes[0]))
logger.info(result)
results.append(result)
except RuntimeError as e:
logger.exception(e)
from numba import cuda
device = cuda.get_current_device()
device.reset()
return results
def run_with_tf_optimizations(do_eager_mode: bool, use_xla: bool):
import tensorflow as tf
from functools import wraps
def run_func(func):
@wraps(func)
def run_in_eager_mode(*args, **kwargs):
return func(*args, **kwargs)
@wraps(func)
@tf.function(experimental_compile=use_xla)
def run_in_graph_mode(*args, **kwargs):
return func(*args, **kwargs)
if do_eager_mode is True:
assert (
use_xla is False
), "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`."
return run_in_eager_mode
else:
return run_in_graph_mode
return run_func
def run_tensorflow(use_gpu, model_names, model_class, precision, num_threads, batch_sizes, sequence_lengths,
repeat_times, cache_dir, verbose):
results = []
import tensorflow as tf
tf.config.threading.set_intra_op_parallelism_threads(num_threads)
if not use_gpu:
tf.config.set_visible_devices([], 'GPU')
if use_gpu and not tf.test.is_built_with_cuda():
logger.error("Please install Tensorflow-gpu, and use a machine with GPU for testing gpu performance.")
return results
if use_gpu: # Restrict TensorFlow to only use the first GPU
physical_devices = tf.config.list_physical_devices('GPU')
try:
tf.config.set_visible_devices(physical_devices[0], 'GPU')
tf.config.experimental.set_memory_growth(physical_devices[0], True)
tf.distribute.OneDeviceStrategy(device='/gpu:0')
except RuntimeError as e:
logger.exception(e)
if precision == Precision.FLOAT16 or precision == Precision.INT8:
raise NotImplementedError("Mixed precision is currently not supported.")
for model_name in model_names:
config = AutoConfig.from_pretrained(model_name, cache_dir=cache_dir)
model = load_pretrained_model(model_name,
config=config,
cache_dir=cache_dir,
custom_model_class=model_class,
is_tf_model=True)
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=cache_dir)
max_input_size = tokenizer.max_model_input_sizes[
model_name] if model_name in tokenizer.max_model_input_sizes else 1024
for batch_size in batch_sizes:
if batch_size <= 0:
continue
for sequence_length in sequence_lengths:
if max_input_size is not None and sequence_length > max_input_size:
continue
logger.info("Run Tensorflow on {} with input shape {}".format(model_name,
[batch_size, sequence_length]))
import random
rng = random.Random()
values = [rng.randint(0, config.vocab_size - 1) for i in range(batch_size * sequence_length)]
input_ids = tf.constant(values, shape=(batch_size, sequence_length), dtype=tf.int32)
try:
# Disable both for better inference perf
@run_with_tf_optimizations(do_eager_mode=False, use_xla=True)
def encoder_forward():
return model(input_ids, training=False)
@run_with_tf_optimizations(do_eager_mode=False, use_xla=True)
def encoder_decoder_forward():
return model(input_ids, decoder_input_ids=input_ids, training=False)
@run_with_tf_optimizations(do_eager_mode=False, use_xla=True)
def lxmert_forward():
feats = tf.random.normal([1, 1, config.visual_feat_dim])
pos = tf.random.normal([1, 1, config.visual_pos_dim])
return model(input_ids, visual_feats=feats, visual_pos=pos, training=False)
inference = encoder_forward
if config.is_encoder_decoder:
inference = encoder_decoder_forward
elif isinstance(config, LxmertConfig):
inference = lxmert_forward
inference()
runtimes = timeit.repeat(lambda: inference(), repeat=repeat_times, number=1)
result = {
"engine": "tensorflow",
"version": tf.__version__,
"device": "cuda" if use_gpu else "cpu",
"optimizer": "",
"precision": precision,
"io_binding": "",
"model_name": model_name,
"inputs": 1,
"threads": num_threads,
"batch_size": batch_size,
"sequence_length": sequence_length,
"datetime": str(datetime.now()),
}
result.update(get_latency_result(runtimes, batch_size))
logger.info(result)
results.append(result)
except RuntimeError as e:
logger.exception(e)
from numba import cuda
device = cuda.get_current_device()
device.reset()
return results
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("-m",
"--models",
required=False,
nargs="+",
type=str,
default=["bert-base-cased", "roberta-base", "gpt2"],
choices=list(MODELS.keys()),
help="Pre-trained models in the list: " + ", ".join(MODELS.keys()))
parser.add_argument("--model_source",
required=False,
nargs=1,
type=str,
default='pt',
choices=['pt', 'tf'],
help="Export onnx from pt or tf")
parser.add_argument('--model_class',
required=False,
type=str,
default=None,
choices=list(MODEL_CLASSES),
help='Model type selected in the list: ' + ', '.join(MODEL_CLASSES))
parser.add_argument("-e",
"--engines",
required=False,
nargs="+",
type=str,
default=['onnxruntime'],
choices=[
'onnxruntime', 'torch', 'torchscript',
'tensorflow', 'iree', 'shark'
],
help="Engines to benchmark")
parser.add_argument("-c",
"--cache_dir",
required=False,
type=str,
default=os.path.join('.', 'cache_models'),
help="Directory to cache pre-trained models")
parser.add_argument("--onnx_dir",
required=False,
type=str,
default=os.path.join('.', 'onnx_models'),
help="Directory to store onnx models")
parser.add_argument("-g", "--use_gpu", required=False, action="store_true", help="Run on cuda device")
parser.add_argument(
"-p",
"--precision",
type=Precision,
default=Precision.FLOAT32,
choices=list(Precision),
help="Precision of model to run. fp32 for full precision, fp16 for half precision, and int8 for quantization")
parser.add_argument("--verbose", required=False, action="store_true", help="Print more information")
parser.add_argument("--overwrite", required=False, action="store_true", help="Overwrite existing models")
parser.add_argument("-o",
"--optimize_onnx",
required=False,
action="store_true",
help="Use optimizer.py to optimize onnx model")
parser.add_argument("-v", "--validate_onnx", required=False, action="store_true", help="Validate ONNX model")
parser.add_argument("-f",
"--fusion_csv",
required=False,
default=None,
help="CSV file for saving summary results of graph optimization.")
parser.add_argument("-d", "--detail_csv", required=False, default=None, help="CSV file for saving detail results.")
parser.add_argument("-r", "--result_csv", required=False, default=None, help="CSV file for saving summary results.")
parser.add_argument("-i",
"--input_counts",
required=False,
nargs="+",
default=[1],
type=int,
choices=[1, 2, 3],
help="Number of ONNX model inputs. Please use 1 for fair comparison with Torch or TorchScript.")
parser.add_argument("-t",
"--test_times",
required=False,
default=100,
type=int,
help="Number of repeat times to get average inference latency.")
parser.add_argument("-b", "--batch_sizes", nargs="+", type=int, default=[1])
parser.add_argument("-s", "--sequence_lengths", nargs="+", type=int, default=[4, 8, 16, 32, 64, 128, 256])
parser.add_argument('--disable_ort_io_binding',
required=False,
action='store_true',
help='Disable running ONNX Runtime with binded inputs and outputs. ')
parser.set_defaults(disable_ort_io_binding=False)
parser.add_argument("-n", "--num_threads", required=False, nargs="+", type=int, default=[0], help="Threads to use")
args = parser.parse_args()
return args
def main():
args = parse_arguments()
setup_logger(args.verbose)
if args.precision == Precision.FLOAT16 and not args.use_gpu:
logger.error("fp16 is for GPU only")
return
if args.precision == Precision.INT8 and args.use_gpu:
logger.error("int8 is for CPU only")
return
args.num_threads = sorted(set(cpu_count if x <= 0 else x for x in args.num_threads))
logger.info(f"Arguments: {args}")
if not os.path.exists(args.cache_dir):
try:
os.mkdir(args.cache_dir)
except OSError:
logger.error("Creation of the directory %s failed" % args.cache_dir)
enable_shark = "shark" in args.engines
if enable_shark:
if not shark_installed:
enable_shark = False
logger.warning("Flags set shark to enabled but shark is not installed")
enable_torch = "torch" in args.engines
enable_torchscript = "torchscript" in args.engines
enable_onnxruntime = "onnxruntime" in args.engines
enable_tensorflow = "tensorflow" in args.engines
enable_iree = "iree" in args.engines
results = []
for num_threads in args.num_threads:
torch.set_num_threads(num_threads)
logger.debug(torch.__config__.parallel_info())
if enable_torch or enable_torchscript or enable_shark:
if args.input_counts != [1]:
logger.warning("--input_counts is not implemented for torch or torchscript engine.")
if enable_shark:
logger.info("running shark...")
results += run_shark(args.use_gpu, args.models,
args.model_class, args.precision,
num_threads, args.batch_sizes,
args.sequence_lengths, args.test_times,
True, args.cache_dir, args.verbose)
if enable_torchscript:
logger.info("running torchscript...")
results += run_pytorch(args.use_gpu, args.models, args.model_class, args.precision, num_threads,
args.batch_sizes, args.sequence_lengths, args.test_times, True, args.cache_dir,
args.verbose)
if enable_torch:
logger.info("running torch...")
results += run_pytorch(args.use_gpu, args.models, args.model_class, args.precision, num_threads,
args.batch_sizes, args.sequence_lengths, args.test_times, False, args.cache_dir,
args.verbose)
if enable_tensorflow:
results += run_tensorflow(args.use_gpu, args.models, args.model_class, args.precision, num_threads,
args.batch_sizes, args.sequence_lengths, args.test_times, args.cache_dir,
args.verbose)
if enable_iree:
results += run_iree(args.use_gpu, args.models, args.model_class,
args.precision, num_threads, args.batch_sizes,
args.sequence_lengths, args.test_times,
args.cache_dir, args.verbose)
model_fusion_statistics = {}
if enable_onnxruntime:
try:
use_raw_attention_mask = True
results += run_onnxruntime(args.use_gpu, args.models, args.model_class, args.precision, num_threads,
args.batch_sizes, args.sequence_lengths, args.test_times, args.input_counts,
args.optimize_onnx, args.validate_onnx, args.cache_dir, args.onnx_dir,
args.verbose, args.overwrite, args.disable_ort_io_binding,
use_raw_attention_mask, model_fusion_statistics, args.model_source)
except:
logger.error(f"Exception", exc_info=True)
time_stamp = datetime.now().strftime("%Y%m%d-%H%M%S")
if model_fusion_statistics:
csv_filename = args.fusion_csv or f"benchmark_fusion_{time_stamp}.csv"
output_fusion_statistics(model_fusion_statistics, csv_filename)
if len(results) == 0:
if args.batch_sizes != [0]:
logger.warning("No any result avaiable.")
return
csv_filename = args.detail_csv or f"benchmark_detail_{time_stamp}.csv"
output_details(results, csv_filename)
csv_filename = args.result_csv or f"benchmark_summary_{time_stamp}.csv"
output_summary(results, csv_filename, args)
if __name__ == "__main__":
main()