Using the IMDB data found in Keras here a few algorithms built with Keras. The source code is from Francois Chollet's book Deep learning with Python. The aim is to predict whether a review is positive or negative just by analyzing the text. Both self-created as well as pre-trained (GloVe) word embeddings are used. Finally there's a LSTM model and the accuracies of the different algorithms are compared. For the LSTM model I had to cut the data sets of 25.000 sequences by 80% to 5.000, since my laptop's CPU was not able to run the data crunching, making the model's not fully comparable.
-
Notifications
You must be signed in to change notification settings - Fork 3
Using the IMDB data found in Keras here a few algorithms built with Keras. The source code is from Francois Chollet's book Deep learning with Python. The aim is to predict whether a review is positive or negative just by analyzing the text. Both self-created as well as pre-trained (GloVe) word embeddings are used. Finally there's a LSTM model an…
north0n-FI/Analysing-IMDB-reviews-using-GloVe-and-LSTM
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
Using the IMDB data found in Keras here a few algorithms built with Keras. The source code is from Francois Chollet's book Deep learning with Python. The aim is to predict whether a review is positive or negative just by analyzing the text. Both self-created as well as pre-trained (GloVe) word embeddings are used. Finally there's a LSTM model an…
Topics
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published