forked from RubensZimbres/Repo-2017
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Autoencoder for Audio.py
101 lines (88 loc) · 2.93 KB
/
Autoencoder for Audio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import wave
import struct
from struct import *
import matplotlib.pyplot as plt
from keras.layers import Input, Dense
from keras.models import Model
import numpy as np
import matplotlib.pyplot as plt
from keras.callbacks import ModelCheckpoint
from sklearn.preprocessing import MinMaxScaler
import pandas as pd
a=wave.open('pare.wav')
leng = a.getnframes()
c=[]
for i in range(70000,90000):
data=a.readframes(1)
d=struct.unpack("f", data)
c.append(d)
e=pd.DataFrame(c)
f=e.dropna()
g=[]
for i in range(5000,10000,25):
g.append(np.mean(f[i:i+500]))
x_train2= MinMaxScaler().fit_transform(g)
x_train1=x_train2[0:200]
x_train0=[float(i) for i in x_train1]
x_train=np.array([x_train0]).astype('float32')
plt.figure(figsize=(10, 5))
plt.plot([float(i) for i in x_train[0]])
encoding_dim = 150
input_img = Input(shape=(200,))
encoded = Dense(encoding_dim, activation='relu')(input_img)
decoded = Dense(200, activation='sigmoid')(encoded)
autoencoder = Model(input=input_img, output=decoded)
encoder = Model(input=input_img, output=encoded)
encoded_input = Input(shape=(encoding_dim,))
decoder_layer = autoencoder.layers[-1]
decoder = Model(input=encoded_input, output=decoder_layer(encoded_input))
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
filepath="audio.compress-{loss:.4f}.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='binary_crossentropy', verbose=1, save_best_only=False)
autoencoder.summary()
autoencoder.fit(x_train, x_train,
nb_epoch=50,
batch_size=40,
shuffle=False,
validation_data=(x_train, x_train),callbacks=[checkpoint],verbose=0)
filename = "audio.compress-0.5576.hdf5"
autoencoder.load_weights(filename)
autoencoder.compile(loss='mean_squared_error', optimizer='adam')
encoded_imgs = encoder.predict(x_train)
decoded_imgs = decoder.predict(encoded_imgs)
n = 1 # how many digits we will display
plt.figure(figsize=(10, 5))
for i in range(n):
# display original
ax = plt.subplot(2, n, i + 1)
plt.imshow(x_train[i].reshape(10, 20))
plt.title("ORIGINAL AUDIO")
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
plt.figure(figsize=(8, .5))
for i in range(n):
ax = plt.subplot(1, n, i+1)
plt.imshow(encoded_imgs.reshape(75,2).T)
plt.title('ENCODED AUDIO')
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
plt.figure(figsize=(10, 5))
for i in range(n):
# display reconstruction
ax = plt.subplot(2, n, i + 1 + n)
plt.imshow(decoded_imgs[i].reshape(10, 20))
plt.title("RECONSTRUCTED AUDIO")
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
print("Accuracy=",1-np.mean(abs(x_train-decoded_imgs)),'\n')
plt.figure(figsize=(10, 2))
plt.plot(x_train[0],color='r',linewidth=3)
plt.plot(decoded_imgs[0])
plt.title('ORIGINAL (blue) and RECONSTRUCTED AUDIO (red)')
plt.show()