-
Notifications
You must be signed in to change notification settings - Fork 0
/
thesis.aux
649 lines (649 loc) · 61.5 KB
/
thesis.aux
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
\relax
\catcode`"\active
\select@language{english}
\@writefile{toc}{\select@language{english}}
\@writefile{lof}{\select@language{english}}
\@writefile{lot}{\select@language{english}}
\select@language{english}
\@writefile{toc}{\select@language{english}}
\@writefile{lof}{\select@language{english}}
\@writefile{lot}{\select@language{english}}
\citation{tevhiggscombinations}
\citation{lepewwgpage}
\citation{lhcxswg2011,lhcxswg2012}
\citation{lhcxswg2011}
\@writefile{toc}{\contentsline {chapter}{List of Figures}{13}}
\citation{cmspub}
\citation{Weber201159}
\citation{TRK-10-005}
\citation{AN-12-048}
\citation{AN-12-048}
\citation{HIG-12-036}
\citation{HIG-12-036}
\citation{HIG-12-036}
\citation{HIG-12-020}
\citation{HIG-12-020}
\citation{HIG-12-020}
\citation{HIG-12-045}
\citation{HIG-12-045}
\citation{HIG-12-045}
\citation{HIG-12-045}
\citation{combinedWmass}
\citation{pdg}
\@writefile{toc}{\contentsline {chapter}{List of Tables}{27}}
\citation{HIG-12-020}
\citation{AN-12-160}
\citation{AN-12-160}
\citation{AN-12-160}
\@writefile{toc}{\contentsline {chapter}{\numberline {1}Introduction}{33}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:introduction}{{1}{33}}
\citation{EWK-11-001,AN-11-009}
\@writefile{toc}{\contentsline {chapter}{\numberline {2}Theory and Motivations}{35}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:theory}{{2}{35}}
\@writefile{toc}{\contentsline {section}{\numberline {2.1}The Standard Model of Particle Physics}{35}}
\newlabel{sec:sm}{{2.1}{35}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.1.1}Fundamental Matter Particles}{35}}
\newlabel{eqn:Dirac}{{\relax 2.1}{36}}
\@writefile{lot}{\contentsline {table}{\numberline {\relax 2.1}{\ignorespaces Fundamental fermions in the Standard Model. All of the fundamental fermions are spin-$\frac {1}{2}$ particles. The anti-fermion counterparts are not listed here.\relax }}{36}}
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{tab:fermions}{{\relax 2.1}{36}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.1.2}Fundamental Forces}{36}}
\citation{combinedWmass,pdg}
\citation{combinedWmass}
\citation{pdg}
\citation{combinedWmass}
\citation{pdg}
\citation{noether}
\citation{glashow,weinberg,salam}
\citation{glashow}
\@writefile{lot}{\contentsline {table}{\numberline {\relax 2.2}{\ignorespaces Fundamental gauge bosons in the Standard Model. All of the gauge-bosons are spin-1 particles. The masses of the $W^{\pm }$ and $Z$ bosons are taken from References~\citep {combinedWmass} and~\citep {pdg} respectively.\relax }}{37}}
\newlabel{tab:bosons}{{\relax 2.2}{37}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.1.3}Electroweak Gauge Symmetry}{37}}
\newlabel{sec:ewksymmetry}{{2.1.3}{37}}
\citation{wu}
\newlabel{eqn:ewklagrangianeg}{{\relax 2.3}{38}}
\newlabel{eqn:wmunu}{{\relax 2.4}{38}}
\newlabel{eqn:bmunu}{{\relax 2.5}{38}}
\citation{aitchison}
\citation{halzen}
\newlabel{eqn:doublettrans}{{2.1.3}{39}}
\newlabel{eqn:ewkbosons}{{\relax 2.11}{39}}
\citation{aitchison}
\citation{Higgs:1964ia,PhysRev.155.1554,Higgs:1964pj,Guralnik:1964eu,PhysRev.145.1156}
\citation{weinberg}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.1.4}Spontaneous Symmetry Breaking: The Higgs Mechanism}{40}}
\newlabel{eqn:higgslagr}{{\relax 2.13}{40}}
\newlabel{eqn:lagrssb}{{\relax 2.17}{41}}
\citation{Higgs:1964ia,PhysRev.155.1554,Higgs:1964pj,Guralnik:1964eu,PhysRev.145.1156}
\citation{muondecay}
\citation{ellisHiggsReview}
\citation{higgstriviality}
\citation{higgsreview2012}
\citation{lephiggs}
\citation{tevhiggscombinations}
\citation{tevhiggscombinations}
\citation{tevhiggscombinations}
\@writefile{toc}{\contentsline {section}{\numberline {2.2}The SM Higgs Boson}{42}}
\newlabel{sec:smhiggs}{{2.2}{42}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.1}Constraints and Previous Searches}{42}}
\@writefile{toc}{\contentsline {subsubsection}{Direct Searches}{42}}
\citation{lepewwgpage}
\citation{lepewwgpage}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 2.1}{\ignorespaces The 95\% confidence upper limits on the ratio of Higgs boson production to the SM prediction as a function of $m_{H}$. The dotted line indicates the median expected exclusion assuming no SM Higgs boson exists while the solid line indicates the observed exclusion obtained from the data. Where this line falls below 1, a SM Higgs boson with that mass is excluded at the 95\% confidence level as indicated by the green bands. The other coloured bands indicate exclusion limits resulting from direct searches for the SM Higgs boson conducted by other Collaborations before June 2012. The figure has been altered from its original source~\cite {tevhiggscombinations}.\relax }}{43}}
\newlabel{fig:tevatronlims}{{\relax 2.1}{43}}
\citation{lhcxswg2011,lhcxswg2012}
\citation{lhcxswg2011,lhcxswg2012}
\citation{lhcxswg2011,lhcxswg2012}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 2.2}{\ignorespaces Delta chi-squared from global fit to combined data from CDF, D0, SLD and the LEP Collaborations as a function of $m_{H}$~\cite {lepewwgpage}. The solid line is the nominal fit with theoretical uncertainties indicated in blue while the dashed lines indicate alternative theoretical prescriptions. The yellow bands indicate the regions excluded at the 95\% confidence level from direct searches for the SM Higgs boson conducted at LEP and the LHC before March 2012.\relax }}{44}}
\newlabel{fig:blueband}{{\relax 2.2}{44}}
\@writefile{toc}{\contentsline {subsubsection}{Precision Measurements}{44}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.2}Higgs Boson Production and Decay at the LHC}{45}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 2.3}{\ignorespaces Dominant SM Higgs boson production mechanisms: Gluon-gluon fusion (top left), vector-boson fusion (bottom left), associated production with vector boson (top right) and top anti-top quark pair (bottom right).\relax }}{45}}
\newlabel{fig:higgsprodfeyn}{{\relax 2.3}{45}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 2.4}{\ignorespaces SM Higgs boson production cross-sections at $\sqrt {s}=7~\mathrm {TeV}$ (top) and 8 TeV (bottom) of the four main production mechanisms, $pp\rightarrow H+X$, along with their theoretical uncertainties as a function of $m_{H}$~\citep {lhcxswg2011,lhcxswg2012}. The coloured bands indicate the theoretical uncertainties.\relax }}{46}}
\newlabel{fig:higgsprod}{{\relax 2.4}{46}}
\citation{lhcxswg2011}
\citation{lhcxswg2011}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 2.5}{\ignorespaces Left: SM Higgs boson production branching ratios for the dominant decays as a function of $m_{H}$. Right: SM Higgs boson total width, $\Gamma _{H}$, as a function of $m_{H}$~\citep {lhcxswg2011}.\relax }}{47}}
\newlabel{fig:higgsdecay}{{\relax 2.5}{47}}
\citation{aliceexperiment}
\citation{atlasexperiment}
\citation{cmsexperiment}
\citation{lhcbexperiment}
\@writefile{toc}{\contentsline {chapter}{\numberline {3}The LHC and the CMS Detector}{49}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:detector}{{3}{49}}
\@writefile{toc}{\contentsline {section}{\numberline {3.1}The LHC}{49}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.1}{\ignorespaces LHC accelerator ring. The relative locations of the four main experiments are indicated along with their points of access to the beam.\relax }}{50}}
\newlabel{fig:lhcring}{{\relax 3.1}{50}}
\@writefile{toc}{\contentsline {section}{\numberline {3.2}The CMS Detector}{50}}
\newlabel{sec:cmsdetector}{{3.2}{50}}
\citation{cmspub}
\citation{cmspub}
\citation{trckAC}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.2}{\ignorespaces Diagram of the CMS Detector. The arrows indicate the main detector elements. The figure has been altered from its original source~\citep {cmspub}.\relax }}{52}}
\newlabel{fig:cms}{{\relax 3.2}{52}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.1}Tracker}{52}}
\citation{Weber201159}
\citation{Weber201159}
\citation{TRK-10-005}
\citation{TRK-10-005}
\citation{TRK-10-005}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.3}{\ignorespaces Cross-section of the pixel and silicon strip detector components of the CMS tracker~\citep {Weber201159}.\relax }}{53}}
\newlabel{fig:trackergeom}{{\relax 3.3}{53}}
\citation{TDR1}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.4}{\ignorespaces Resolution of vertex $z$-position as a function of the number of tracks associated to the vertex measured in simulation and 2010 data~\citep {TRK-10-005}. The resolution is given for three different average track momenta.\relax }}{54}}
\newlabel{fig:vtxreso}{{\relax 3.4}{54}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.2}Electromagnetic Calorimeter}{54}}
\citation{AN-06-140}
\citation{cseez}
\citation{dfutyan}
\newlabel{eqn:resofit}{{\relax 3.2}{55}}
\@writefile{toc}{\contentsline {subsubsection}{Electron and Photon Reconstruction}{55}}
\citation{AN-09-164}
\citation{GSF_Electron_Reconstruction_CMS}
\citation{TDR1}
\citation{CMS-DP-2012-007}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.5}{\ignorespaces Sub-cluster construction of the Hybrid algorithm used to reconstruct photons and electrons in the ECAL barrel.\relax }}{56}}
\newlabel{fig:hybridclustering}{{\relax 3.5}{56}}
\citation{CMS-DP-2012-007}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.6}{\ignorespaces Relative ECAL crystal response to blue laser light (440 nm) in bins of pseudo-rapidity, for the 2011 data taking period. The grey bands indicate periods during which there was no beam.\relax }}{57}}
\newlabel{fig:trans}{{\relax 3.6}{57}}
\@writefile{toc}{\contentsline {subsubsection}{Laser Calibration}{57}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.7}{\ignorespaces Ratio $E/p$ in electrons reconstructed in the ECAL Barrel from $W\rightarrow e\nu $ events in 2011 data as a function of time before and after applying transparency corrections from the laser monitoring (LM) system. The blue line indicates the correction applied per point averaged over all crystals used in the electron energy measurement.\relax }}{58}}
\newlabel{fig:scaleeop}{{\relax 3.7}{58}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.3}Shower-shape and Isolation}{58}}
\citation{l1}
\citation{hlt}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.8}{\ignorespaces Shower shape variable $r_{9}$ (left) and $\sigma _{i\eta i\eta }$ (right) distributions for superclusters associated with simulated real and fake photons. The real photon is taken from simulated $H\rightarrow \gamma \gamma $ events while the fake photon is taken from a $\gamma +jet$ sample where the photon candidate is matched to a generated quark leg. In the right hand plot, two distributions can be distinguished. The narrower is from photons in the barrel and the wider from photons in the endcaps. \relax }}{59}}
\newlabel{fig:showershape}{{\relax 3.8}{59}}
\citation{antikt}
\@writefile{toc}{\contentsline {section}{\numberline {3.3}Level-1 Trigger}{60}}
\newlabel{sec:l1trigger}{{3.3}{60}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.1}Jet Energy Calibration}{60}}
\newlabel{sec:jetenergyresponse}{{3.3.1}{60}}
\citation{jetcalib}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.9}{\ignorespaces Response measured from matched generator-L1 jet pairs in MC as a function of the generator jet pseudo-rapidity $|\eta ^{Gen}|$.\relax }}{61}}
\newlabel{fig:respvseta}{{\relax 3.9}{61}}
\newlabel{eqn:jecfit}{{\relax 3.5}{61}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.10}{\ignorespaces Correction function for the $0.348 < |\eta ^{Gen}| < 0.695$. The points represent the average quantities as measured in MC. The blue line is a parametric fit to the points using a chi-squared minimisation. The error bars, estimated from the number of MC events, are too small to be visible in this plot.\relax }}{62}}
\newlabel{fig:egcorrfunc}{{\relax 3.10}{62}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.2}Calibration Performance}{62}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.11}{\ignorespaces Closure tests performed in MC as a function of $E_{T}^{L1}$ (left) and $\eta ^{Gen}$ (right). The test shows that after applying the corrections, the response is within 10\% (dashed lines) of unity. The error bars are too small to be visible in these plots.\relax }}{63}}
\newlabel{fig:closure}{{\relax 3.11}{63}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.12}{\ignorespaces Jet energy resolution at L1 as a function of $E_{T}^{L1}$ before and after application of the derived calibrations. The error bars are too small to be visible in these plots.\relax }}{63}}
\newlabel{fig:mcresolutionl1}{{\relax 3.12}{63}}
\citation{l1triggernote}
\@writefile{toc}{\contentsline {subsubsection}{Performance in Data}{64}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 3.13}{\ignorespaces Energy resolution, $\sigma _{E}$, of L1 jets as a function of transverse energy deposited in the calorimeter, $E_{T}$. The coefficients of the functional form shown are the result of a fit to the points.\relax }}{65}}
\newlabel{fig:l1dataresolution}{{\relax 3.13}{65}}
\citation{HIG-11-033}
\@writefile{toc}{\contentsline {chapter}{\numberline {4}Higgs Boson Decay to Two Photons}{67}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:hgg}{{4}{67}}
\citation{AN-12-048}
\citation{AN-12-048}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.1}{\ignorespaces Flow chart of the $H\rightarrow \gamma \gamma $ analysis performed on the 2011 dataset. The blue boxes indicate stages which involve the use of a boosted decision tree (BDT). The red boxes indicate inputs from the common CMS reconstruction and are not detailed in this chapter. The two methods for signal extraction, labelled A and B, are indicated by the green boxes.\relax }}{68}}
\newlabel{fig:mvaoverview}{{\relax 4.1}{68}}
\@writefile{toc}{\contentsline {section}{\numberline {4.1}Data Samples}{68}}
\newlabel{sec:datasamples}{{4.1}{68}}
\citation{powheg}
\citation{hqt}
\citation{lhcxswg}
\citation{pythia}
\citation{geant4}
\citation{cmssw}
\citation{tmva}
\@writefile{toc}{\contentsline {section}{\numberline {4.2}Object Reconstruction and Identification}{69}}
\newlabel{sec:objectrecoandid}{{4.2}{69}}
\@writefile{lot}{\contentsline {table}{\numberline {\relax 4.1}{\ignorespaces Background MC used throughout the analysis with production cross-sections and corresponding equivalent integrated luminosity. The prompt-prompt ($\gamma \gamma $) sample comprises events from the DiphotonJets and Diphoton Box samples. Both the QCD dijet and Gamma+Jet contain prompt-fake ($\gamma j$) events. The samples are filtered to avoid double counting of this background. Fake-fake ($jj$) events are taken from the QCD Dijet sample.\relax }}{70}}
\newlabel{tab:backgroundmc}{{\relax 4.1}{70}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.1}Boosted Decision Trees}{70}}
\newlabel{sec:bdts}{{4.2.1}{70}}
\citation{tmva}
\citation{friedmanbdt}
\citation{tmva}
\citation{AN-12-160}
\citation{AN-11-343}
\citation{AN-12-048}
\citation{AN-12-048}
\citation{CMS-DP-2012-007}
\citation{AN-12-048}
\citation{pdg}
\citation{crystalball}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.2}Supercluster Energy Correction}{72}}
\newlabel{sec:superclusterenergyreconstruction}{{4.2.2}{72}}
\@writefile{toc}{\contentsline {subsubsection}{Energy Scale Measured in Data}{72}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.2}{\ignorespaces Comparison of the diphoton mass peak in Higgs MC with a mass of 120 GeV using different measurements of the photon energy. The black line is from using the raw energy of the supercluster, the blue is from using the analytic fit method (Standard + IC Residual) and the red from using the regression method (Raw + Regression). The quantity $\sigma _{eff}$, the narrowest range in $m_{\gamma \gamma }$ which contains 68\% of the distribution, is given for each peak~\citep {AN-12-048}.\relax }}{73}}
\newlabel{fig:mcregrcomparison}{{\relax 4.2}{73}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.3}{\ignorespaces Invariant mass peak in $H\rightarrow \gamma \gamma $ MC with $m_{H}=125$ GeV. The blue histogram is from events in which the generated vertex is within 10mm of the vertex assigned to the diphoton pair. The red histogram is from events in which the incorrect vertex is assigned. Both distributions are normalised to unit area for ease of comparison.\relax }}{75}}
\newlabel{fig:higgsrightwrongvertex}{{\relax 4.3}{75}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.3}Vertex Selection}{75}}
\newlabel{sec:vertexselection}{{4.2.3}{75}}
\citation{AN-12-048}
\citation{IN-11-014}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.4}{\ignorespaces Fraction of simulated gluon-gluon fusion events in which the $z$ position of the selected vertex is within 10mm of the true vertex as a function of Higgs boson $p_{T}$. The red histogram is the average probability to select the correct vertex in each bin estimated from the per-event BDT.\relax }}{76}}
\newlabel{fig:vtxeffhmc}{{\relax 4.4}{76}}
\citation{AN-12-048}
\citation{AN-12-048}
\citation{HIG-11-033}
\citation{AN-12-048}
\citation{AN-12-116}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.5}{\ignorespaces Fraction of $Z\rightarrow \mu ^{+}\mu ^{-}$ events in which the selected vertex is with 10mm of the true vertex in Run 2011A (left) and Run 2011B (right) data and MC as a function of $p_{T}^{Z}$~\citep {AN-12-048}. The BDT selection, labelled MVA, is shown by the open circles where the ranking method, labelled RANK is shown as points.\relax }}{77}}
\newlabel{fig:vtxzmumu}{{\relax 4.5}{77}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.4}Photon Identification}{77}}
\newlabel{sec:photonidentification}{{4.2.4}{77}}
\citation{2011JInst611002C}
\citation{2011JInst611002C}
\@writefile{lot}{\contentsline {table}{\numberline {\relax 4.2}{\ignorespaces Signal efficiency for the preselection measured in data and MC using tag-and-probe in $Z\rightarrow e^{+}e^{-}$ events. The Data/MC ratios are applied as corrections to the signal MC for the purposes of signal modelling. The uncertainties listed here are statistical only.\relax }}{79}}
\newlabel{tab:sigeffpresel}{{\relax 4.2}{79}}
\@writefile{toc}{\contentsline {section}{\numberline {4.3}Event Selection}{79}}
\newlabel{sec:eventselection}{{4.3}{79}}
\citation{AN-12-048}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.1}Diphoton BDT}{80}}
\newlabel{sec:diphotonbdt}{{4.3.1}{80}}
\@writefile{toc}{\contentsline {subsubsection}{Diphoton BDT Validation with $Z\rightarrow e^{+}e^{-}$ Data}{81}}
\citation{HIG-11-033}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.6}{\ignorespaces Kinematic inputs to the diphoton BDT in data and MC. The distributions are for events which pass the full selection including a cut on the diphoton BDT output of 0.05. The expectation from a SM Higgs boson with 125 GeV is shown in red.\relax }}{82}}
\newlabel{fig:diphotonbdtvars1}{{\relax 4.6}{82}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.7}{\ignorespaces Additional input variables to the diphoton BDT in data and MC. The distributions are for events which pass the full selection including a cut on the diphoton BDT output of 0.05. The expectation from a SM Higgs boson with 125 GeV is shown in red.\relax }}{83}}
\newlabel{fig:diphotonbdtvars2}{{\relax 4.7}{83}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.2}Dijet Tagging}{83}}
\newlabel{sec:dijettagging}{{4.3.2}{83}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.8}{\ignorespaces Diphoton BDT distribution in data and MC. The contribution expected from a SM Higgs boson with mass 125 GeV, scaled by 100, is shown in red. \relax }}{84}}
\newlabel{fig:diphotonBDT}{{\relax 4.8}{84}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.9}{\ignorespaces Invariant mass distribution in data and MC after applying the full event selection in the range 100 to 180 GeV. The contribution expected from a SM Higgs boson with mass 125 GeV, scaled by 10, is shown in red. \relax }}{84}}
\newlabel{fig:massmcdata}{{\relax 4.9}{84}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.10}{\ignorespaces Diphoton BDT output distribution in $Z\rightarrow e^{+}e^{-}$ MC and data after the full selection treating the electrons as photons for the purposes of energy reconstruction. The electron veto is inverted to preferentially select electrons. The lower panel show the data/MC ratio.\relax }}{85}}
\newlabel{fig:zeevaliddiphomva}{{\relax 4.10}{85}}
\@writefile{lot}{\contentsline {table}{\numberline {\relax 4.3}{\ignorespaces Dijet selection criteria for the two $qqH$ jets. The leading and sub-leading $E_{T}$ jets are denoted $j^{1}$ and $j^{2}$ respectively.\relax }}{85}}
\newlabel{tab:vbfcuts}{{\relax 4.3}{85}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.11}{\ignorespaces Per-photon resolution estimator, $\sigma _{E}$, relative to the measured energy in $Z\rightarrow e^{+}e^{-}$ MC and data treating the electrons as photons in the barrel (left) and endcaps (right). The red lines show the $\pm 1\sigma $ systematic error envelope obtained by scaling the value of $\sigma _{E}$ by $\pm 10\%$. The lower panels show the ratios to the nominal MC distributions.\relax }}{86}}
\newlabel{fig:zeevalidsigmaE}{{\relax 4.11}{86}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.12}{\ignorespaces Photon ID BDT output in $Z\rightarrow e^{+}e^{-}$ MC and data treating the electrons as photons in the barrel (left) and endcaps (right). The red lines show the $\pm 1\sigma $ systematic error envelope obtained by shifting the output value by $\pm 0.025\%$. The lower panels show the ratios to the nominal MC distributions.\relax }}{87}}
\newlabel{fig:zeevalidphoidmva}{{\relax 4.12}{87}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.13}{\ignorespaces Separation in $\eta $ between two identified jets in data and MC. The expectation from a SM Higgs boson produced via vector boson fusion ($qqH$), scaled by 100, is shown in red. All cuts other than the one on $\Delta \eta (Jet 1, Jet2)$ are applied to these distributions.\relax }}{88}}
\newlabel{fig:vbfdeta}{{\relax 4.13}{88}}
\@writefile{toc}{\contentsline {section}{\numberline {4.4}Signal Extraction}{88}}
\newlabel{sec:signalextraction}{{4.4}{88}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.14}{\ignorespaces Figure of merit for selection of the signal region cut value, $w$. Each colour shows the evaluation under different Higgs boson mass hypotheses.\relax }}{89}}
\newlabel{fig:sigwindowopt}{{\relax 4.14}{89}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.1}Definition of the Signal Region}{89}}
\citation{tmva}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.15}{\ignorespaces Signal to background ratio as a function of diphoton BDT output and $\Delta m/m_{H}$. The red lines indicate the cuts applied before the training and for applying the event selection. Darker shades indicate a regions with a higher signal to background ratio. The seven shades indicate the region contained in each of the seven BDT bins used for the signal extraction at $m_{H}= 123$ GeV.\relax }}{90}}
\newlabel{fig:bdtplane}{{\relax 4.15}{90}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.2}Event Categorisation BDT}{90}}
\newlabel{sec:bdteventdiscriminator}{{4.4.2}{90}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.16}{\ignorespaces Signal efficiency vs background rejection curves for three different MVA techniques used to train the signal-background event discriminator. The curves give the (in)efficiencies for signal (background) after applying sequentially tighter cuts on the discriminator output.\relax }}{91}}
\newlabel{fig:mvacomparisons}{{\relax 4.16}{91}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.17}{\ignorespaces Signal and background BDT output distribution with the training sample (points) and testing sample (solid area) superimposed. The comparison is shown using an arbitrary uniform binning (left) and the bins used for extracting the signal (right).\relax }}{92}}
\newlabel{fig:bdttraining}{{\relax 4.17}{92}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.3}Binning of the BDT Output Distribution}{92}}
\newlabel{sec:binningofthebdtoutputdistribution}{{4.4.3}{92}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.18}{\ignorespaces Comparison of the distributions of BDT output at $m_{H}=125$ GeV for data and background MC. The distributions are arbitrarily binned for the purposes of comparison only.\relax }}{93}}
\newlabel{fig:datamcagreement_sidebandBDT}{{\relax 4.18}{93}}
\newlabel{eqn:expectedsig_bins}{{\relax 4.9}{93}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.4}Background Model}{94}}
\newlabel{sec:backgroundmodel}{{4.4.4}{94}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.19}{\ignorespaces Signal to background ratio as a function of BDT output bin. The red and blue histograms show the distribution after applying step 1 of the binning procedure before and after smoothing respectively. The black vertical lines indicate the boundaries of the final binning choice from the full procedure.\relax }}{95}}
\newlabel{fig:binningscheme}{{\relax 4.19}{95}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.20}{\ignorespaces Invariant mass distribution of the full 2011 dataset after selection over the mass range used in the analysis (100 to 180 GeV). The $\pm 2\%$ signal region for $m_{H}=124$ GeV is indicated in red, while the six corresponding sidebands are indicated as blue bands. The blue line is the double power law fit to the data for the background normalisation for this mass hypothesis.\relax }}{96}}
\newlabel{fig:fullmassspec}{{\relax 4.20}{96}}
\@writefile{toc}{\contentsline {subsubsection}{Obtaining the Normalisation of the Background}{96}}
\newlabel{sec:backgroundnormalisation}{{4.4.4}{96}}
\@writefile{toc}{\contentsline {subsubsection}{Obtaining the Shape of the Background}{97}}
\newlabel{sec:backgroundshape}{{4.4.4}{97}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.21}{\ignorespaces Total error on the background normalisation as a function of $m_{H}$ from different choices of the background shape parameterisation of $m_{\gamma \gamma }$. The total error for the one-parameter exponential and polynomial functions are off the scale of this plot.\relax }}{98}}
\newlabel{fig:totalerrorallfunc}{{\relax 4.21}{98}}
\newlabel{eqn:sbdefsu}{{\relax 4.10}{98}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.22}{\ignorespaces Distribution in data from the six sidebands corresponding to $m_{H}=125$ GeV of the two BDT input variables, diphoton BDT (left) and $\Delta m/m_{H}$ (right).\relax }}{99}}
\newlabel{fig:datasidebandsinput}{{\relax 4.22}{99}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.23}{\ignorespaces Distribution in data from the six sidebands corresponding to $m_{H}=125$ GeV of the BDT output binned in the 7 BDT output bins used for signal extraction.\relax }}{99}}
\newlabel{fig:datasidebandsoutput}{{\relax 4.23}{99}}
\citation{minuit}
\citation{pca}
\newlabel{eqn:sbfitdef}{{\relax 4.11}{100}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.24}{\ignorespaces Simultaneous fits to the six sidebands in data to determine the background shape for $m_{H}=124$ GeV. There are eight panels showing the result in each of the seven BDT bins plus one for the dijet tagged bin. The six black points in each panel are the fractional populations of the data in each sideband. The blue line represents the linear fit used to determine the fraction of background in each bin.\relax }}{101}}
\newlabel{fig:examplesbfits}{{\relax 4.24}{101}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.25}{\ignorespaces Covariance matrix from the sideband fit to determine the background shape at $m_{H}=124$ GeV. The covariance matrix includes the additional 20\% systematic attributed to possible second order variations in the BDT output background distribution with mass.\relax }}{102}}
\newlabel{fig:covariance}{{\relax 4.25}{102}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.26}{\ignorespaces Relative total fit uncertainty on the background model in each bin at $m_{H}=130$ GeV as a function of the number of sidebands used in the fit to determine the shape of the background.\relax }}{103}}
\newlabel{fig:relativefiterrorvsnsidebands}{{\relax 4.26}{103}}
\newlabel{eqn:sbfitdefho}{{\relax 4.13}{103}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.5}Signal Model}{104}}
\newlabel{sec:signalmodel}{{4.4.5}{104}}
\@writefile{toc}{\contentsline {subsubsection}{Photon Level Corrections}{104}}
\@writefile{toc}{\contentsline {subsubsection}{Diphoton Level Corrections}{105}}
\@writefile{toc}{\contentsline {subsubsection}{Systematic Uncertainties}{105}}
\citation{HIG-11-033}
\citation{lhcxswg}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.27}{\ignorespaces Re-weighting applied to signal MC in which the $z$ position of the selected vertex is within 10mm of the true vertex as a function of $p_{T}^{H}$. The weights are derived from $Z\rightarrow \mu ^{+}\mu ^{-}$ events in data and MC.\relax }}{106}}
\newlabel{fig:vtxprobreweight}{{\relax 4.27}{106}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.28}{\ignorespaces Top: Energy scale (left) and resolution (right) uncertainties in the $ggH$ signal model. The effect of $\pm 3\sigma $ variations derived in MC are shown with red dashed lines while the interpolated $\pm 3\sigma $ are shown with blue. Bottom: Variation in bin content at different quantiles (number of standard deviations from the nominal) for the three highest $S/B$ BDT bins. The blue and red markers indicate the yields extracted directly from MC while the black line indicates the quadratic interpolation function used to derive the $\pm 1\sigma $ variations for the signal model.\relax }}{107}}
\newlabel{fig:signalmodel_escaleres}{{\relax 4.28}{107}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.29}{\ignorespaces Efficiency$\times $acceptance for a SM Higgs boson as a function of its mass ($m_{H}$) after applying all of the corrections to the MC. The blue bands indicate the error from each source of systematic uncertainty on the signal model summed in quadrature.\relax }}{108}}
\newlabel{fig:effacc}{{\relax 4.29}{108}}
\@writefile{toc}{\contentsline {subsubsection}{Interpolation to Intermediate Mass Points}{108}}
\@writefile{lot}{\contentsline {table}{\numberline {\relax 4.4}{\ignorespaces Sources of systematic uncertainties included in the signal model. Where a magnitude of the uncertainty from each source is given, the value represents a $\pm 1\sigma $ variation which is applied to the signal model.\relax }}{109}}
\newlabel{tab:sigsystematics}{{\relax 4.4}{109}}
\citation{onlineresults}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.30}{\ignorespaces Closure test for signal interpolation to intermediate mass points. The solid grey histogram is the result of a linear interpolation between the efficiency$\times $acceptance in each bin of the blue ($m_{H}=130$ GeV) and red ($m_{H}=140$ GeV) histograms. The efficiency$\times $acceptance from $ggH$ MC generated with mass 135 GeV is shown in black for comparison.\relax }}{110}}
\newlabel{fig:siginterptest}{{\relax 4.30}{110}}
\@writefile{toc}{\contentsline {subsubsection}{Validation with $Z\rightarrow e^{+}e^{-}$ data}{110}}
\citation{HIG-12-036}
\citation{HIG-12-036}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.31}{\ignorespaces BDT output distribution for $Z\rightarrow e^{+}e^{-}$ events in data and MC (left). Data/MC ratio for the BDT output distribution (right). The variation in MC due to the largest systematic uncertainties included in the signal model are shown for comparison.\relax }}{111}}
\newlabel{fig:zeebdtoutput}{{\relax 4.31}{111}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.6}Likelihood Model for Signal Extraction}{111}}
\newlabel{sec:statisticalinterpretations}{{4.4.6}{111}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.32}{\ignorespaces Observed number of events in data for each of the seven BDT bins and dijet bin at $m_{H}=125$ GeV. The background model is shown in blue along with the maximal $\pm 1/2\sigma $ variations. The expected contribution from a SM Higgs boson is shown in red~\citep {HIG-12-036}.\relax }}{112}}
\newlabel{fig:results7TeV}{{\relax 4.32}{112}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 4.33}{\ignorespaces Signal to background ratio in each of the seven BDT bins and dijet bin at $m_{H}=125$ GeV. The expected background is taken from the data-driven model described in Section~\ref {sec:backgroundmodel}. The error bars represent the uncertainty in the ratio due to the uncertainties in the background model.\relax }}{112}}
\newlabel{fig:results7TeV_soverb}{{\relax 4.33}{112}}
\newlabel{eqn:likelihoodhggbdt}{{\relax 4.14}{113}}
\newlabel{eqn:slh}{{\relax 4.15}{113}}
\newlabel{eqn:blh}{{\relax 4.16}{113}}
\@writefile{toc}{\contentsline {chapter}{\numberline {5}Statistical Interpretations of the Data}{115}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:statistics}{{5}{115}}
\@writefile{toc}{\contentsline {section}{\numberline {5.1}Hypothesis Testing}{115}}
\newlabel{sec:hypothesistesting}{{5.1}{115}}
\citation{statsbook}
\newlabel{eqn:alpha}{{\relax 5.4}{116}}
\newlabel{eqn:bestw}{{\relax 5.5}{116}}
\citation{cls}
\newlabel{eqn:llr2}{{\relax 5.6}{117}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.1}Exclusion Limits}{117}}
\newlabel{eqn:clsplusb}{{\relax 5.8}{117}}
\newlabel{eqn:clb}{{\relax 5.9}{118}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.2}Quantifying Excesses in the Observed Data}{118}}
\newlabel{eqn:plocal}{{\relax 5.10}{118}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.1}{\ignorespaces Distributions of the test statistic $q_{\mu }$ under a background-only hypothesis ($\mu =0$) and signal plus background hypothesis ($\mu =0.6$) for a SM Higgs boson of mass 130 GeV. The distributions are normalised to unit area. The observed value of the test statistic from data is indicated by the black arrow.\relax }}{119}}
\newlabel{fig:qmuexample}{{\relax 5.1}{119}}
\citation{roofit}
\citation{combinationstwiki}
\citation{asimov}
\@writefile{toc}{\contentsline {section}{\numberline {5.2}$H\rightarrow \gamma \gamma $ Statistical Results}{120}}
\newlabel{sec:hggresults2011}{{5.2}{120}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.2}{\ignorespaces Normalised distribution of $q_{0}$ at $m_{H}=124$ GeV under the background-only hypothesis generated from toys (red histogram) and from the analytic form (green line). The observed value, $q_{0}^{obs}$, obtained from the data is indicated by the black arrow.\relax }}{121}}
\newlabel{fig:q0dist}{{\relax 5.2}{121}}
\@writefile{lot}{\contentsline {table}{\numberline {\relax 5.1}{\ignorespaces Comparison of expected median upper limit and quantiles obtained using the asymptotic calculation of $CL_{s}$ and toys. The error quoted in the toys column is the statistical uncertainty from only generating 1000 toys at each value of $\mu $. The comparison is made at three mass hypotheses in the range 120 to 140 GeV.\relax }}{122}}
\newlabel{tab:compareasvstoys}{{\relax 5.1}{122}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.3}{\ignorespaces Exclusion limits on SM Higgs boson production and subsequent decay to two photons in the range $110 < m_{H}< 150$ GeV. The black dashed line indicates the median expected value for the upper limit on $\mu $ given the size of the dataset while the green and yellow bands indicate the 68\% and 95\% quantile ranges respectively. The black solid line shows the observed upper limit extracted from the data at steps in $m_{H}$ of 100 MeV. Where this line falls below the red line at 1, a SM Higgs boson at that mass is excluded at the 95\% confidence level or more.\relax }}{123}}
\newlabel{fig:limits7TeV}{{\relax 5.3}{123}}
\citation{leelyon}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.4}{\ignorespaces Local p-value ($p_{0}$) calculated in steps of 100 MeV in the range $110<m_{H}<150$. The observed $p_{0}$ obtained from the data is shown in black while the expected value in the presence of a SM Higgs boson is given by the dashed blue line. The expectation from a Higgs boson with mass 125 GeV is shown as a red dashed line. The right hand scale shows the significance in standard deviations at each $m_{H}$.\relax }}{124}}
\newlabel{fig:pvals7TeV}{{\relax 5.4}{124}}
\@writefile{toc}{\contentsline {subsubsection}{The Look-Elsewhere Effect}{124}}
\citation{lee}
\citation{HIG-12-028}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.5}{\ignorespaces Best fit for the signal strength, $\mathaccentV {hat}05E{\mu }$, in steps of 100 MeV in the range $110<m_{H}<150$. The green bands indicate the 68\% uncertainty on $\mathaccentV {hat}05E{\mu }$ for a fixed $m_{H}$. The red line at 1 represents the expectation for a SM Higgs boson.\relax }}{125}}
\newlabel{fig:muhat7TeV}{{\relax 5.5}{125}}
\newlabel{eqn:lee}{{\relax 5.11}{125}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.6}{\ignorespaces Relationship between local and global p-values to determine the look-elsewhere effect in the $H\rightarrow \gamma \gamma $ search for the range 110 to 150 GeV. The yellow band indicates the statistical precision of the relationship due to the limited number of toys produced. The red line indicates a fit of an analytic relation between the two and is used to calculate the global p-value for larger local significances.\relax }}{126}}
\newlabel{fig:leestudy}{{\relax 5.6}{126}}
\citation{HIG-12-036}
\citation{HIG-12-036}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2.1}Inclusion of 2012 Data}{127}}
\newlabel{sec:8tev}{{5.2.1}{127}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2.2}Updates for the 8 TeV Analysis}{127}}
\newlabel{sec:updates8TeV}{{5.2.2}{127}}
\citation{HIG-12-036}
\citation{HIG-12-036}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.7}{\ignorespaces Observed number of events in the 2012 dataset for each of the seven BDT bins and tight/loose dijet bins for $m_{H}=125$ GeV. The background model is shown in blue along with the maximal $\pm 1/2\sigma $ variations. The expected contribution from a SM Higgs boson is shown in red~\citep {HIG-12-036}.\relax }}{128}}
\newlabel{fig:results8TeV}{{\relax 5.7}{128}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2.3}Results from the Combined Datasets}{128}}
\newlabel{sec:resultscombined}{{5.2.3}{128}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 5.8}{\ignorespaces Exclusion limits on SM Higgs boson production and subsequent decay to two photons (left) and local p-value, $p_{0}$ (right) in the range $110 < m_{H}< 150$ GeV from the combined 2011 (7 TeV) and 2012 (8 TeV) datasets. In the left figure, the black dashed lines indicates the median expected value for the upper limit on $\mu $ given the size of the dataset while the green and yellow bands indicate the 68\% and 95\% quantile ranges respectively. The black solid line shows the observed upper limit. In the right figure, the observed $p_{0}$ obtained from the combined datasets is shown in black while the expected value in the presence of a SM Higgs boson is given by the black dashed line. The observed $p_{0}$ from the 2011 (7 TeV) and 2012 (8 TeV) datasets individually are shown by the blue and red dashed lines respectively. The right hand scale shows the significance in standard deviations at each $m_{H}$~\citep {HIG-12-036}.\relax }}{129}}
\newlabel{fig:limits8TeV}{{\relax 5.8}{129}}
\citation{HIG-12-028}
\@writefile{toc}{\contentsline {chapter}{\numberline {6}Higgs Combination and Properties}{131}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:combinations}{{6}{131}}
\@writefile{toc}{\contentsline {section}{\numberline {6.1}Combined Higgs Searches}{131}}
\newlabel{sec:combinationmethodology}{{6.1}{131}}
\citation{roofit}
\citation{combinationstwiki}
\newlabel{eqn:likelihood}{{\relax 6.1}{132}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.1.1}Diagnostics with Toy Datasets}{132}}
\newlabel{sec:diagnostics}{{6.1.1}{132}}
\citation{combinationstwiki}
\citation{AN-12-317}
\citation{onlinediag}
\@writefile{lot}{\contentsline {table}{\numberline {\relax 6.1}{\ignorespaces A realistic counting experiment across several channels. The number of observed events and that expected from signal and background processes are given per channel. Several sources of systematic are included which effect the expected rate of each signal or background process. Where a dash is entered, the systematic uncertainty has no effect on that process or channel.\relax }}{134}}
\newlabel{tab:realanalysis}{{\relax 6.1}{134}}
\citation{HIG-12-020}
\citation{HIG-12-020}
\citation{HIG-12-015}
\citation{HIG-12-019}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.1.2}Higgs Search Combination}{135}}
\newlabel{combinedsearchresults}{{6.1.2}{135}}
\@writefile{toc}{\contentsline {subsubsection}{Combined Search Channels}{135}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 6.1}{\ignorespaces Summary plots for the parameter \texttt {lumi} of the realistic counting experiment. The entries in the histograms are for fits to toys generated under the background-only hypothesis letting $\mu $ float freely. The red histogram includes only toys in which a positive signal strength is fitted. The bottom left panel shows the correlation between the value generated for the pseudo-measurement of the nuisance \texttt {lumi\_In} and the fitted value of the parameter. The bottom right panel shows the shape of the negative log-likelihood (NLL) as a function of the nuisance parameter. The parameters of the fitted Gaussian for each histogram are given as the Mean and Sigma. The value and error of the nuisance parameter are given before fitting to the data (Pre-fit), followed by the best fit value of the parameter under the background-only and signal-plus-background hypotheses.\relax }}{136}}
\newlabel{fig:real_lumi_s}{{\relax 6.1}{136}}
\citation{HIG-12-019}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 6.2}{\ignorespaces Median expected 95\% CL upper limits on $\mu =\sigma /\sigma _{SM}$ for the five Higgs boson decay channels and their combination in the absence of a Higgs boson as a function of $m_{H}$. The limits are given in the range 110-600 GeV (left) and 110-145 GeV (right). A channel which falls below 1, indicated by the dashed line, for some range is expected to exclude a Higgs boson in that range at the 95\% CL or more using this dataset~\citep {HIG-12-020}.\relax }}{137}}
\newlabel{fig:expectedlimits}{{\relax 6.2}{137}}
\citation{HIG-12-018}
\citation{HIG-12-017}
\citation{HIG-12-021}
\citation{HIG-11-034}
\citation{HIG-12-016}
\citation{HIG-12-016,HIG-11-027}
\citation{HIG-12-023}
\citation{HIG-12-020}
\citation{HIG-12-020}
\citation{HIG-12-020}
\citation{HIG-12-020}
\citation{HIG-12-020}
\citation{HIG-12-020}
\citation{HIG-12-045}
\@writefile{toc}{\contentsline {subsubsection}{Combined Results}{139}}
\newlabel{sec:combinedsearchresults}{{6.1.2}{139}}
\newlabel{RF1}{140}
\@writefile{lot}{\contentsline {table}{\numberline {\relax 6.2}{\ignorespaces Summary of analyses included in the ICHEP 2012 combination~\citep {HIG-12-020}. The column for $H$ prod indicates the production process targeted by the sub-channel. A label ``untagged'' indicates that the main contribution is from the $ggH$ production process. The final states for each channel are exclusive (no events lie in more than one sub-channel). The notations used here are: $jj$ indicating a dijet pair whether from a $W,~Z$ boson decay or being consistent the vector-boson fusion process; $j_{b}$ denotes a jet which is identified as a $b$-jet; $l$ is either a muon ($\mu $) or electron ($e$); OF and SF are dilepton pairs with opposite flavour ($e\mu $) and same flavour ($ee$ or $\mu \mu $) respectively.\relax }}{140}}
\newlabel{tab:channelsummary}{{\relax 6.2}{140}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 6.3}{\ignorespaces Combined 95\% upper limits on the production cross-section of Higgs boson production relative to that of the Standard Model in the $m_{H}$ ranges 110-600 GeV (left) and 110-145 GeV (right)~\citep {HIG-12-020}. The median upper limits expected in the absence of a SM Higgs boson are indicated by the dashed black line and the 68\% and 95\% quantiles by the green and yellow bands respectively. The observed upper limits from the combined ICHEP 2012 dataset is shown by the black solid line. Where the observed limit is lower than 1 (red line), a SM Higgs boson with that $m_{H}$ is excluded at the 95\% confidence level.\relax }}{141}}
\newlabel{fig:combinedexcl}{{\relax 6.3}{141}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 6.4}{\ignorespaces The observed local $p$-value, $p_{0}$ for sub-combinations of the low and high resolution channels and the overall combination as a function of $m_{H}$. The dashed line shows the expected $p_{0}$ at each $m_{H}$ should a SM Higgs boson exist with mass $m_{H}$~\citep {HIG-12-020}.\relax }}{142}}
\newlabel{fig:combinedpval}{{\relax 6.4}{142}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 6.5}{\ignorespaces Relationship between the local and global $p_{0}$ in the range 115-130 GeV. The red line indicates the analytic expression (shown) which is fit to the relationship derived from 10,000 pseudo-datasets.\relax }}{143}}
\newlabel{fig:leecombination}{{\relax 6.5}{143}}
\citation{fc}
\@writefile{toc}{\contentsline {section}{\numberline {6.2}Higgs Properties}{144}}
\newlabel{sec:properties}{{6.2}{144}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.2.1}Extracting Signal Parameters}{144}}
\newlabel{eqn:llrNd}{{\relax 6.5}{144}}
\@writefile{toc}{\contentsline {subsubsection}{The Feldman-Cousins Procedure for Evaluating Confidence Intervals}{145}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.2.2}Combined Mass Measurement}{145}}
\citation{HIG-12-045}
\citation{HIG-12-045}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 6.6}{\ignorespaces Distributions of the test statistic $q_{\mu }$ for the 0/1 jet bin of the $H\rightarrow \tau \tau $ analysis at the combined best fit mass, $m_{H} = 125.8$ GeV. The green and yellow filled regions indicate the 68\% and 95\% quantiles of the distribution respectively. The left distribution is generated at $\mu =2.28$ which lies outside of the 68\% confidence interval while the right distribution is generated at $\mu =1.34$ which lies inside the 68\% confidence interval. The values of the test statistic obtained from the observed data, $q_{\mu }^{obs}$, are indicated by the solid vertical lines.\relax }}{146}}
\newlabel{fig:fcegtoys}{{\relax 6.6}{146}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 6.7}{\ignorespaces Confidence level evaluation curve for the $H\rightarrow \tau \tau $ analysis in the (0/1) jet bin. At each point, pseudo-data are generated with signal injected at the given value of $\mu $ and its confidence level (CL) calculated. Linear interpolation between the generated points is used to determine the 68\% confidence interval; the two values of $\mu $ (horizontal lines) which cross the curve at $1-CL_{s+b}=0.68$ (vertical red line).\relax }}{147}}
\newlabel{fig:confcontour}{{\relax 6.7}{147}}
\citation{HIG-12-045}
\citation{HIG-12-045}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 6.8}{\ignorespaces Left: One-dimensional scan of $q_{m_{x}}$ for the $H\rightarrow \gamma \gamma $, $H\rightarrow ZZ$ channels and their combination. For the combination, the relative signal strengths between the channels are allowed to float. The 68\% and 95\% confidence intervals for $m_{X}$ are determined as the values at which the curves cross the horizontal red lines. Right: 68\% confidence contours in $m_{X}$ and $\sigma /\sigma _{SM}$ for the $H\rightarrow \gamma \gamma $ and $H\rightarrow ZZ$ channels and their combination. For this combination, the relative signal strengths of the channels are kept fixed to the SM expectation~\citep {HIG-12-045}.\relax }}{148}}
\newlabel{fig:mass}{{\relax 6.8}{148}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.2.3}Compatibility with the Standard Model}{148}}
\@writefile{toc}{\contentsline {subsubsection}{Channel Compatibility}{148}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 6.9}{\ignorespaces 68\% confidence intervals for $\mu =\sigma /\sigma _{SM}$ for individual channels or combination of sub-channels determined using the Feldman-Cousins procedure (left) and by scanning the likelihood (right). The value of $\sigma /\sigma _{SM}$ denotes the production cross-section times the relevant branching fraction for a given channel, relative to the SM. The green band indicates the 68\% confidence interval on $\sigma /\sigma _{SM}$ for all channels combined. The intervals are determined at the best fit mass, $m_{H}=125.8$ GeV~\citep {HIG-12-045}.\relax }}{149}}
\newlabel{fig:fc1d}{{\relax 6.9}{149}}
\citation{HIG-12-045}
\citation{HIG-12-045}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 6.10}{\ignorespaces 68\% confidence contours for the production cross-section in $ggH$ and $ttH$ modes ($\mu _{ggH+ttH}$), and $VH$ and $qqH$ modes ($\mu _{VH+qqH}$), relative to the SM determined using the Feldman-Cousins procedure (left) and by scanning the likelihood (right). Each colour indicates the result by combining all sub-channels in a particular decay mode. The crosses indicate the best fit values of the two parameters. The yellow diamond at $(1,1)$ indicates the SM values. The contours are determined at the best fit mass, $m_{H}=125.8$ GeV~\citep {HIG-12-045}.\relax }}{150}}
\newlabel{fig:fc2d}{{\relax 6.10}{150}}
\@writefile{toc}{\contentsline {subsubsection}{Coupling Measurements}{150}}
\newlabel{sec:coupling}{{6.2.3}{150}}
\citation{couplingsint}
\citation{HIG-12-045}
\citation{HIG-12-045}
\@writefile{lot}{\contentsline {table}{\numberline {\relax 6.3}{\ignorespaces Boson and fermion vertex scaling as a function of $\kappa _{V}$ and $\kappa _{f}$ for each production/decay included in the combination. Each cell represents the scaling factor applied to the production (row) decay (column) combination.\relax }}{152}}
\newlabel{tab:kvkf}{{\relax 6.3}{152}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax 6.11}{\ignorespaces The 68\% confidence contours extracted from data in the individual decay channels (coloured regions) and the full combination (solid line). The yellow square shows the SM value, while the fermiophobic and background-only scenarios are indicated by the pink dot and red diamond respectively~\citep {HIG-12-045}.\relax }}{152}}
\newlabel{fig:kvkf}{{\relax 6.11}{152}}
\@writefile{toc}{\contentsline {chapter}{\numberline {7}Conclusions and Outlook}{153}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:conclusions}{{7}{153}}
\bibstyle{unsrt}
\bibdata{thesis}
\bibcite{tevhiggscombinations}{{1}{}{{}}{{}}}
\bibcite{lepewwgpage}{{2}{}{{}}{{}}}
\bibcite{lhcxswg2011}{{3}{}{{}}{{}}}
\bibcite{lhcxswg2012}{{4}{}{{}}{{}}}
\bibcite{cmspub}{{5}{}{{}}{{}}}
\bibcite{Weber201159}{{6}{}{{}}{{}}}
\bibcite{TRK-10-005}{{7}{}{{}}{{}}}
\bibcite{AN-12-048}{{8}{}{{}}{{}}}
\bibcite{HIG-12-036}{{9}{}{{}}{{}}}
\bibcite{HIG-12-020}{{10}{}{{}}{{}}}
\bibcite{HIG-12-045}{{11}{}{{}}{{}}}
\bibcite{combinedWmass}{{12}{}{{}}{{}}}
\bibcite{pdg}{{13}{}{{}}{{}}}
\@writefile{toc}{\contentsline {chapter}{Bibliography}{155}}
\bibcite{AN-12-160}{{14}{}{{}}{{}}}
\bibcite{EWK-11-001}{{15}{}{{}}{{}}}
\bibcite{AN-11-009}{{16}{}{{}}{{}}}
\bibcite{noether}{{17}{}{{}}{{}}}
\bibcite{glashow}{{18}{}{{}}{{}}}
\bibcite{weinberg}{{19}{}{{}}{{}}}
\bibcite{salam}{{20}{}{{}}{{}}}
\bibcite{wu}{{21}{}{{}}{{}}}
\bibcite{aitchison}{{22}{}{{}}{{}}}
\bibcite{halzen}{{23}{}{{}}{{}}}
\bibcite{Higgs:1964ia}{{24}{}{{}}{{}}}
\bibcite{PhysRev.155.1554}{{25}{}{{}}{{}}}
\bibcite{Higgs:1964pj}{{26}{}{{}}{{}}}
\bibcite{Guralnik:1964eu}{{27}{}{{}}{{}}}
\bibcite{PhysRev.145.1156}{{28}{}{{}}{{}}}
\bibcite{muondecay}{{29}{}{{}}{{}}}
\bibcite{ellisHiggsReview}{{30}{}{{}}{{}}}
\bibcite{higgstriviality}{{31}{}{{}}{{}}}
\bibcite{higgsreview2012}{{32}{}{{}}{{}}}
\bibcite{lephiggs}{{33}{}{{}}{{}}}
\bibcite{aliceexperiment}{{34}{}{{}}{{}}}
\bibcite{atlasexperiment}{{35}{}{{}}{{}}}
\bibcite{cmsexperiment}{{36}{}{{}}{{}}}
\bibcite{lhcbexperiment}{{37}{}{{}}{{}}}
\bibcite{trckAC}{{38}{}{{}}{{}}}
\bibcite{TDR1}{{39}{}{{}}{{}}}
\bibcite{AN-06-140}{{40}{}{{}}{{}}}
\bibcite{cseez}{{41}{}{{}}{{}}}
\bibcite{dfutyan}{{42}{}{{}}{{}}}
\bibcite{AN-09-164}{{43}{}{{}}{{}}}
\bibcite{GSF_Electron_Reconstruction_CMS}{{44}{}{{}}{{}}}
\bibcite{CMS-DP-2012-007}{{45}{}{{}}{{}}}
\bibcite{l1}{{46}{}{{}}{{}}}
\bibcite{hlt}{{47}{}{{}}{{}}}
\bibcite{antikt}{{48}{}{{}}{{}}}
\bibcite{jetcalib}{{49}{}{{}}{{}}}
\bibcite{l1triggernote}{{50}{}{{}}{{}}}
\bibcite{HIG-11-033}{{51}{}{{}}{{}}}
\bibcite{powheg}{{52}{}{{}}{{}}}
\bibcite{hqt}{{53}{}{{}}{{}}}
\bibcite{lhcxswg}{{54}{}{{}}{{}}}
\bibcite{pythia}{{55}{}{{}}{{}}}
\bibcite{geant4}{{56}{}{{}}{{}}}
\bibcite{cmssw}{{57}{}{{}}{{}}}
\bibcite{tmva}{{58}{}{{}}{{}}}
\bibcite{friedmanbdt}{{59}{}{{}}{{}}}
\bibcite{AN-11-343}{{60}{}{{}}{{}}}
\bibcite{crystalball}{{61}{}{{}}{{}}}
\bibcite{IN-11-014}{{62}{}{{}}{{}}}
\bibcite{AN-12-116}{{63}{}{{}}{{}}}
\bibcite{2011JInst611002C}{{64}{}{{}}{{}}}
\bibcite{minuit}{{65}{}{{}}{{}}}
\bibcite{pca}{{66}{}{{}}{{}}}
\bibcite{onlineresults}{{67}{}{{}}{{}}}
\bibcite{statsbook}{{68}{}{{}}{{}}}
\bibcite{cls}{{69}{}{{}}{{}}}
\bibcite{roofit}{{70}{}{{}}{{}}}
\bibcite{combinationstwiki}{{71}{}{{}}{{}}}
\bibcite{asimov}{{72}{}{{}}{{}}}
\bibcite{leelyon}{{73}{}{{}}{{}}}
\bibcite{lee}{{74}{}{{}}{{}}}
\bibcite{HIG-12-028}{{75}{}{{}}{{}}}
\bibcite{AN-12-317}{{76}{}{{}}{{}}}
\bibcite{onlinediag}{{77}{}{{}}{{}}}
\bibcite{HIG-12-015}{{78}{}{{}}{{}}}
\bibcite{HIG-12-019}{{79}{}{{}}{{}}}
\bibcite{HIG-12-018}{{80}{}{{}}{{}}}
\bibcite{HIG-12-017}{{81}{}{{}}{{}}}
\bibcite{HIG-12-021}{{82}{}{{}}{{}}}
\bibcite{HIG-11-034}{{83}{}{{}}{{}}}
\bibcite{HIG-12-016}{{84}{}{{}}{{}}}
\bibcite{HIG-11-027}{{85}{}{{}}{{}}}
\bibcite{HIG-12-023}{{86}{}{{}}{{}}}
\bibcite{fc}{{87}{}{{}}{{}}}
\bibcite{couplingsint}{{88}{}{{}}{{}}}
\@writefile{toc}{\contentsline {chapter}{\numberline {A}}{161}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {section}{\numberline {A.1}L1 Jet Energy Correction Fits}{161}}
\newlabel{app:jecfits}{{A.1}{161}}
\@writefile{lot}{\contentsline {table}{\numberline {\relax A.1}{\ignorespaces Calibration coefficients used to parameterise the L1 jet correction function (Equation~\ref {eqn:jecfit}) for each of the 11 GCT regions.\relax }}{161}}
\newlabel{tab:calibrationcoeffs}{{\relax A.1}{161}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax A.1}{\ignorespaces Fitted correction functions for each of the 7 GCT regions covered by the ECAL and HCAL. The points are fit with the function of Equation~\ref {eqn:jecfit} to provide a parameterisation of the corrections to be applied to L1 jets.\relax }}{162}}
\newlabel{fig:allcorrfuncsp1}{{\relax A.1}{162}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax A.2}{\ignorespaces Fitted correction functions for each of the 4 GCT regions covered by the HF. The points are fit with the function of Equation~\ref {eqn:jecfit} to provide a parameterisation of the corrections to be applied to jets online in the GCT.\relax }}{163}}
\newlabel{fig:allcorrfuncsp2}{{\relax A.2}{163}}
\@writefile{toc}{\contentsline {section}{\numberline {A.2}L1 Jet Resolution}{164}}
\newlabel{app:closurefits}{{A.2}{164}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax A.3}{\ignorespaces Part one of the distributions of $E_{T}^{L1}-E_{T}^{Gen}$ in bins of $E_{T}^{L1}$ of the uncorrected MC jets. The fitted Gaussian is used to extract the resolution as a function of $E_{T}^{L1}$.\relax }}{165}}
\newlabel{fig:mcresfits_u_p1}{{\relax A.3}{165}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax A.4}{\ignorespaces Part two of the distributions of $E_{T}^{L1}-E_{T}^{Gen}$ in bins of $E_{T}^{L1}$ of the uncorrected MC jets. The fitted Gaussian is used to extract the resolution as a function of $E_{T}^{L1}$.\relax }}{166}}
\newlabel{fig:mcresfits_u_p2}{{\relax A.4}{166}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax A.5}{\ignorespaces Part one of the distributions of $E_{T}^{L1}-E_{T}^{Gen}$ in bins of $E_{T}^{L1}$ of the corrected MC jets. The fitted Gaussian is used to extract the resolution as a function of $E_{T}^{L1}$.\relax }}{167}}
\newlabel{fig:mcresfits_pf_p1}{{\relax A.5}{167}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax A.6}{\ignorespaces Part two of the distributions of $E_{T}^{L1}-E_{T}^{Gen}$ in bins of $E_{T}^{L1}$ of the corrected MC jets. The fitted Gaussian is used to extract the resolution as a function of $E_{T}^{L1}$.\relax }}{168}}
\newlabel{fig:mcresfits_pf_p2}{{\relax A.6}{168}}
\citation{AN-12-160}
\citation{AN-12-160}
\citation{AN-12-160}
\citation{AN-12-160}
\citation{AN-12-160}
\citation{AN-12-160}
\@writefile{toc}{\contentsline {chapter}{\numberline {B}}{169}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {section}{\numberline {B.1}Energy Scale and Resolution Measurements}{169}}
\newlabel{app:escaleandresolutiontabs}{{B.1}{169}}
\@writefile{lot}{\contentsline {table}{\numberline {\relax B.1}{\ignorespaces Additional energy resolution included in the $H\rightarrow \gamma \gamma $ signal model measured from comparison of $Z\rightarrow e^{+}e^{-}$ data and MC. The label ``NOT GAP'' indicates superclusters whose seed crystal is located more than 5 crystals away from an ECAL module boundary whereas the label ``GAP'' indicates superclusters whose seed crystal is within 5 crystals of an ECAL module boundary~\citep {AN-12-160}.\relax }}{169}}
\newlabel{tab:eres2011}{{\relax B.1}{169}}
\@writefile{lot}{\contentsline {table}{\numberline {\relax B.2}{\ignorespaces Relative energy scale difference in data and MC ($\Delta P$) in the ECAL barrel, measured in $Z\rightarrow e^{+}e^{-}$ data. The first uncertainty given is statistical while the second is the systematic assigned to cover the difference in the $r_{9}$ distributions between electrons and photons~\citep {AN-12-160}.\relax }}{170}}
\newlabel{tab:escale2011eb}{{\relax B.2}{170}}
\@writefile{lot}{\contentsline {table}{\numberline {\relax B.3}{\ignorespaces Relative energy scale difference in data and MC ($\Delta P$) in the ECAL endcaps, measured in $Z\rightarrow e^{+}e^{-}$ data. The first uncertainty given is statistical while the second is the systematic assigned to cover the difference in the $r_{9}$ distributions between electrons and photons~\citep {AN-12-160}.\relax }}{171}}
\newlabel{tab:escale2011ee}{{\relax B.3}{171}}
\@writefile{toc}{\contentsline {section}{\numberline {B.2}Binning Algorithm Optimisation}{172}}
\newlabel{app:binningalgooptimisation}{{B.2}{172}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax B.1}{\ignorespaces Total number of iterations in the binning optimization scan as a function of the broad step size $P$. The curve is shown for different numbers of final BDT boundaries. The minimum always occurs at the same value of $P$ as indicated by the green vertical line.\relax }}{173}}
\newlabel{fig:pmin}{{\relax B.1}{173}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax B.2}{\ignorespaces Increase in expected significance in the presence of a SM Higgs boson as the number of final BDT output bins is increased. The three curves show the improvement for different numbers of initial bins, $B$. The red curve is representative of the result obtained from performing the optimization procedure in the 2011 analysis.\relax }}{173}}
\newlabel{fig:binningopt}{{\relax B.2}{173}}
\@writefile{toc}{\contentsline {section}{\numberline {B.3}Signal Systematics}{174}}
\newlabel{app:sigsys}{{B.3}{174}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax B.3}{\ignorespaces Systematic uncertainties on the $ggH$ signal model. The effects of $\pm 3\sigma $ variations derived in MC is shown with red dashed lines while the interpolated $\pm 3\sigma $ are shown with blue.\relax }}{175}}
\newlabel{fig:additionalsignalsys}{{\relax B.3}{175}}
\@writefile{toc}{\contentsline {chapter}{\numberline {C}}{177}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {section}{\numberline {C.1}Per-event Log-likelihood Ratio}{177}}
\newlabel{app:pereventllr}{{C.1}{177}}
\@writefile{lof}{\contentsline {figure}{\numberline {\relax C.1}{\ignorespaces Per-event delta negative log-likelihood ($\Delta nll$) distributions for the background-only and signal-plus-background hypotheses in the ICHEP 2012 $H\rightarrow \gamma \gamma $ (left) and $H\rightarrow ZZ \rightarrow 4l$ (right) analyses. The distributions for the observed events from each channel are indicated by the black points. The likelihoods are evaluated for $m_{H}=125$ GeV at the best fit values of $\mu $ from the combination of these two channels only.\relax }}{178}}
\newlabel{fig:perevllr}{{\relax C.1}{178}}
\@writefile{toc}{\contentsline {section}{\numberline {C.2}Feldman-Cousins Boundary Effects}{178}}
\newlabel{app:fcboundaryeffects}{{C.2}{178}}
\providecommand\NAT@force@numbers{}\NAT@force@numbers
\@writefile{lof}{\contentsline {figure}{\numberline {\relax C.2}{\ignorespaces Comparison between 50\% (inner) and 75\% (outer) contours in data from the $H\rightarrow \gamma \gamma $ channel as determined using the Feldman-Cousins and a scan of $q_{{\mathbf {x}}}$ (labelled ``Likelihood Scan''). In the Feldman-Cousins technique, the constraints, $\mu _{ggH+ttH}\ge 0$ and $\mu _{VH+qqH}\ge 0$ are imposed. \relax }}{179}}
\newlabel{fig:comparefclh}{{\relax C.2}{179}}
\global\@altsecnumformattrue