-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathoitLinkedList.frag.glsl
174 lines (141 loc) · 5.75 KB
/
oitLinkedList.frag.glsl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
/*
* Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* SPDX-FileCopyrightText: Copyright (c) 2020-2021 NVIDIA CORPORATION
* SPDX-License-Identifier: Apache-2.0
*/
// OIT_LINKEDLIST builds a linked list of fragments for each pixel.
// (It supports MSAA.) It treats the A-buffer as a single large array, so the
// pointers in the linked list are indexes in this array.
// imgAux stores the head of each linked list per pixel. When we need to store
// a new fragment, we find an empty space in the array using an atomic counter,
// add a new linked list node pointing to the previous head, and set the head
// to the new linked list node. 0 represents nullptr here, and is used as a
// list terminator.
#version 460
#extension GL_GOOGLE_include_directive : enable
#include "shaderCommon.glsl"
////////////////////////////////////////////////////////////////////////////////
// Color //
////////////////////////////////////////////////////////////////////////////////
#if PASS == PASS_COLOR
#include "oitColorDepthDefines.glsl"
layout(binding = IMG_ABUFFER, rgba32ui) uniform coherent uimageBuffer imgAbuffer;
layout(binding = IMG_AUX, r32ui) uniform coherent uimage2DUsed imgAux;
// One major difference from the OpenGL version is that we use a 1x1 image here
// instead of an atomic counter variable.
layout(binding = IMG_COUNTER, r32ui) uniform uimage2D imgCounter;
layout(location = 0) in Interpolants IN;
layout(location = 0, index = 0) out vec4 outColor;
void main()
{
// +1 as 0 is used as a list terminator. Adds 1 to imgCounter[0,0] and
// returns the original value.
const uint newOffset = imageAtomicAdd(imgCounter, ivec2(0), 1) + 1;
// Get the unpremultiplied linear-space RGBA color of this pixel
const vec4 color = shading(IN);
if(newOffset >= scene.linkedListAllocatedPerElement)
{
// we ran out of memory, so tail-blend using premultiplied alpha if allowed
#if OIT_TAILBLEND
outColor = vec4(color.rgb * color.a, color.a); // Premultiply alpha
#else
outColor = vec4(0); // Make the fragment transparent
#endif // #if OIT_TAILBLEND
return;
}
// Note that this is indeed thread-safe! The order in which threads
// reach this line determines the order of the fragments in the linked list.
const uint oldOffset = imageAtomicExchange(imgAux, coord, newOffset);
// Convert to unpremultiplied sRGB for 8-bit storage
const vec4 sRGBColor = unPremultLinearToSRGB(color);
const uvec4 storeValue = uvec4(packUnorm4x8(sRGBColor), //
floatBitsToUint(gl_FragCoord.z), //
storeMask, //
oldOffset);
imageStore(imgAbuffer, int(newOffset), storeValue);
outColor = vec4(0);
}
#endif // #if PASS == PASS_COLOR
////////////////////////////////////////////////////////////////////////////////
// Composite //
////////////////////////////////////////////////////////////////////////////////
#if PASS == PASS_COMPOSITE
// See oitScene.frag.glsl for a description of this technique.
// For each coordinate, we iterate over the linked list, then like OIT_SIMPLE,
// sort and blend the first OIT_LAYERS fragments. The difference is that remaining
// elements in the linked list are tail blended.
#include "oitCompositeDefines.glsl"
layout(binding = IMG_ABUFFER, abufferType) uniform restrict readonly uimageBuffer imgAbuffer;
layout(binding = IMG_AUX, r32ui) uniform restrict readonly uimage2DUsed imgAux;
layout(location = 0) out vec4 outColor;
void main()
{
loadType array[OIT_LAYERS];
vec4 color = vec4(0);
int fragments = 0; // The number of fragments for this sample.
uint startOffset = imageLoad(imgAux, coord).r;
// Traverse the linked list:
while(startOffset != uint(0) && fragments < OIT_LAYERS)
{
const uvec4 stored = imageLoad(imgAbuffer, int(startOffset));
array[fragments] = loadOp(stored);
fragments++;
startOffset = stored.a;
}
// Sort the fragments:
bubbleSort(array, fragments);
// Process the remaining fragments
vec4 tailColor = vec4(0);
while(startOffset != uint(0))
{
uvec4 stored = imageLoad(imgAbuffer, int(startOffset));
// Push the value into the array and tail-blend the furthest value
// that comes out:
#if OIT_TAILBLEND
loadType tail = insertionSortTail(array, loadOp(stored));
doBlendPacked(tailColor, tail.r);
#else // #if OIT_TAILBLEND
insertionSort(array, loadOp(stored));
#endif // #if OIT_TAILBLEND
startOffset = stored.a;
}
vec4 colorSum = vec4(0);
#if OIT_COVERAGE_SHADING
for(int s = 0; s < OIT_MSAA; s++)
{
vec4 sColor = vec4(0);
for(int i = 0; i < fragments; i++)
{
if((array[i].b & (1 << s)) != 0)
{
doBlendPacked(sColor, array[i].r);
}
}
colorSum += sColor;
}
colorSum /= OIT_MSAA;
#else
// Blend all of the fragments together:
for(int i = 0; i < fragments; i++)
{
doBlendPacked(colorSum, array[i].x);
}
#endif
// Finally, blend the frontmost fragments over the tail-blended fragments
doBlend(colorSum, tailColor);
outColor = colorSum;
}
#endif // #if PASS == PASS_COMPOSITE