-
Notifications
You must be signed in to change notification settings - Fork 0
/
adjoints-diag.tex
222 lines (186 loc) · 8.54 KB
/
adjoints-diag.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
\documentclass[letterpaper]{article}
\DeclareSymbolFont{AMSb}{U}{msb}{m}{n}
\DeclareMathAlphabet{\mathbbm}{U}{bbm}{m}{n}
\title{$\Sigma \dashv \Delta \dashv \Pi$}
\usepackage{amsmath,amssymb,amsthm,latexsym}
\usepackage{fancyhdr}
\usepackage[tiny,center,compact,sc]{titlesec}
\usepackage[cm]{fullpage}
\usepackage{pstricks}
\usepackage{graphicx}
\usepackage{verbatim}
\usepackage{bm}
\usepackage{ifthen}
\usepackage{epsfig}
\usepackage[all]{xypic}
\usepackage{textcomp}
\usepackage{url}
\usepackage{multirow}
\usepackage{hyperref}
\usepackage{breakurl}
\renewcommand{\baselinestretch}{0.9}
%\newtheorem{thm}{Thm}[section]
%\newtheorem{dfn}{Def}[section]
\setlength{\parindent}{0pt}
\setlength{\parskip}{3pt}
%Scalable bracket-like
\newcommand{\paren}[1]{\left({#1}\right)}
\newcommand{\brak}[1]{\left[{#1}\right]}
\newcommand{\abs}[1]{\left\lvert{#1}\right\rvert}
\newcommand{\ang}[1]{\left\langle{#1}\right\rangle}
\newcommand{\set}[1]{\left\{#1\right\}}
%Mathematics
\newcommand{\condexp}[1]{\ifthenelse{\equal{#1}{false}}{}{^{#1}}}
\newcommand{\dd}[3][false]{\frac{d\condexp{#1}{#2}}{d{#3}\condexp{#1}}}
\newcommand{\pd}[3][false]{\frac{\partial\condexp{#1}{#2}}{\partial{#3}\condexp{#1}}}
\newcommand{\ifrac}[2]{{#1}/{#2}}
%Quantum Mechanics
\newcommand{\ket}[1]{\left\lvert{#1}\right\rangle}
\newcommand{\bra}[1]{\left\langle{#1}\right\rvert}
\newcommand{\braket}[2]{\left\langle{#1}\middle\vert{#2}\right\rangle}
\newcommand{\Braket}[3]{\left\langle{#1}\middle\vert{#2}\middle\vert{#3}\right\rangle}
\newcommand{\dyad}[2]{\left\lvert{#1}\middle\rangle\middle\langle{#2}\right\rvert}
\DeclareMathOperator{\mm}{\mid\mid}
\newcommand{\defn}[1]{{\bf #1}}
\begin{document}
\maketitle
\section{Getting Started}
The ``diagonal functor'' $\Delta : \mathcal{C} \to \mathcal{C}^2$ is
charmingly degenerate:
$\Delta X = (X,X), \Delta (f : A \to B) = (f,f) : (A,A) \to (B,B)$.
(In the ${}^2$ category, morphisms are such that $(f,g)(a,b) = (f a,g b)$.)
For notational clarity, we'll use $A \times B$ for products within
$\mathcal{C}$ and $(A,B)$ for objects in $\mathcal{C}^2$.
Define $\Pi_1 : \mathcal{C}^2 \to \mathcal{C}$ to be the first
projector, and $\Pi_2$ the second. If $\mathcal{C}$ has
products, then we may define $\Pi : \mathcal{C}^2 \to \mathcal{C}$ as
$(A,B) \mapsto A \times B$, and $\Pi_1 = \pi_1 \circ \Pi$.
If $\mathcal{C}$ has coproducts, define $\Sigma : \mathcal{C}^2 \to
\mathcal{C}$ by $(A,B) \mapsto A + B$.
While on the topic of notation, recall that, if $\mathcal{C}$ is so
equipped, we may form arrows involving products and coproducts from others:
$\ang{f : A \to B,g : A \to C}(a) = (f a) \times (g a) \in B \times C$ and
$\brak{f : A \to C,g : B \to C}((a : A) + (b : B)) \in C$ is case analysis.
\section{Left Adjoint}
\subsection{Unit}
What would a left adjunction to $\Delta$ be? It would be a functor $F :
\mathcal{C}^2 \to \mathcal{C}$ and natural transformation $\eta$ where, in
the category $\mathcal{C}^2$,
\[ \xymatrix{
X \ar[r]^{\eta_X} \ar[rd]_{f} & \Delta (F X) \ar[d]^{\Delta (f^\#)} \\
& \Delta Y
} \equiv \xymatrix {
X \ar[r]^(.4){\eta_X} \ar[rd]_{f} & (F X, F X) \ar[d]^{(f^\#, f^\#)} \\
& (Y, Y)
} \equiv \xymatrix {
(A,B) \ar[r]^(.4){\eta_X} \ar[rd]_{f} & (F (A,B), F (A,B)) \ar[d]^{(f^\#, f^\#)} \\
& (Y, Y)
} \]
If this diagram is to commute for all $f$, then: $\Pi_1 \circ f = \Pi_1
\circ (f^\#, f^\#) \circ \eta_X = f^\# \circ \Pi_1 \circ \eta_X$, and
similarly for the $\Pi_2$ component. Intuitively, this can only work in the
case where $f^\#$ is able to discriminate whether it has been handed the
$\Pi_1$ or $\Pi_2$ projection of $\eta_X$'s output. That sounds like a
perfect use of coproducts! If we take $\eta_X = (i_1, i_2): X
\to \Delta (\Sigma X)$ (i.e. $\eta_X (x) = (i_1 x, i_2 x) : (A,B) \to (A +
B, A + B)$) and define $f^\# = \brak{\Pi_1 \circ f, \Pi_2 \circ f}$, then we
see that
$f^\# \circ \Pi_1 \circ \eta_X =
\brak{\Pi_1 \circ f, \Pi_2 \circ f} \circ \Pi_1 \circ (i_1, i_2) =
\brak{\Pi_1 \circ f, \Pi_2 \circ f} \circ i_1 =
\Pi_1 \circ f
$ as required. Any such $f^\#$ is clearly unique.
All that remains is to check that $\eta_X$ is natural from
$I$ to $\Delta \Sigma$. That is, does this commute for all $f : A \to
B$?
\[ \xymatrix{
A \ar[r]^{\eta_A} \ar[d]^f & \Delta \Sigma A \ar[d]^{\Delta \Sigma f} \\
B \ar[r]^{\eta_B} & \Delta \Sigma B \\
} \equiv \xymatrix{
(A_1, A_2) \ar[r]^(.35){\eta_A} \ar[d]^{(f_1,f_2)} & (A_1 + A_2, A_1 + A_2)
\ar[d]^{(f_1 + f_2, f_1 + f_2)} \\
(B_1, B_2) \ar[r]^(.35){\eta_B} & (B_1 + B_2, B_1 + B_2) \\
} \]
Well:
\begin{align*}
\Delta \Sigma f \circ \eta_A
&= \paren{(f_1 + f_2), (f_1 + f_2)} \circ (i_1, i_2) & \text{defn}~\eta, \Delta, \Sigma \\
&= ((f_1 + f_2) \circ i_1, (f_1 + f_2) \circ i_2) & \circ \\
&= (i_1 \circ f_1, i_2 \circ f_2) & (f + g) \circ i_1 = i_1 \circ f \\
&= (i_1, i_2) \circ (f_1,f_2) & \circ \\
&= \eta_B \circ f & \text{defn}~\eta,f
\end{align*}
So we have: $\Sigma \dashv \Delta$.
\subsection{Counit}
Looking at this the other way, we have, in $\mathcal{C}$,
\[ \xymatrix{
\Sigma (\Delta X) \ar[r]^{\epsilon_X} & X \\
\Sigma Y \ar[u]^{\Sigma f'} \ar[ur]_{f}
} \equiv \xymatrix{
X + X \ar[r]^(.75){\epsilon_X} & X \\
Y_1 + Y_2 \ar[u]^{f'_1 + f'_2} \ar[ur]_{f}
} \]
Then if we take $\epsilon_X = [id,id]$ we can define $f' = (f \circ i_1) + (f
\circ i_2)$. This is unique and $\epsilon_X$ is natural by inspection.
\section{Right Adjoint}
\subsection{Unit}
What about the other way around? Now we have, in $\mathcal{C}$ this time,
\[ \xymatrix{
X \ar[r]^{\eta_X} \ar[rd]_{f} & G (X, X) \ar[d]^{G (f^\#)} \\
& G Y
} \equiv \xymatrix {
X \ar[r]^{\eta_X} \ar[rd]_{f} & G (X, X) \ar[d]^{G (f^\#_1, f^\#_2)} \\
& G (Y_1, Y_2)
} \]
Let's speculate that $G = \Pi_1$ and see what goes wrong. That would mean
that, for each $f : X \to Y$, there is some unique $f^\# : (X,X) \to (Y,Y')$
such that $f = \Pi_1 f^\# \circ \eta_X$. But that can't possibly be true, because
given such a $f^\#$, one that differs only in its second component will also
work, so we've violated the ``exists unique'' part of the definition.
But if we take $G = \Pi$, then
\[ \xymatrix{
X \ar[r]^{\eta_X} \ar[rd]_{f} & G (X, X) \ar[d]^{G (f^\#)} \\
& G Y
} \equiv \xymatrix {
X \ar[r]^{\eta_X} \ar[rd]_{f} & G (X, X) \ar[d]^{G (f^\#_1, f^\#_2)} \\
& G (Y_1, Y_2)
} \equiv \xymatrix {
X \ar[r]^{\eta_X} \ar[rd]_{f} & X \times X \ar[d]^{f^\#_1 \times f^\#_2} \\
& Y_1 \times Y_2
} \]
And we can see that taking $\eta_X = \ang{id,id}$ and $f^\# = (\pi_1 \circ f)
\times (\pi_2 \circ f)$ makes this commute with a unique $f^\#$ for each
$f$. $\eta_X$ is clearly natural. Thus we have that $\Delta \dashv \Pi$.
\subsection{Counit}
Here the counit diagram takes place in $\mathcal{C}^2$:
\[ \xymatrix{
\Delta (\Pi X) \ar[r]^{\epsilon_X} & X \\
\Delta Y \ar[u]^{\Delta f'} \ar[ur]_{f}
} \equiv \xymatrix {
\Delta (\Pi (X_1,X_2)) \ar[r]^(.65){\epsilon_X} & (X_1, X_2) \\
\Delta Y \ar[u]^{\Delta f'} \ar[ur]_{f}
} \equiv \xymatrix {
(X_1 \times X_2, X_1 \times X_2) \ar[r]^(.65){\epsilon_X} & (X_1, X_2) \\
(Y,Y) \ar[u]^{(f',f')} \ar[ur]_{(f_1,f_2)}
} \]
Take $\epsilon_X = (\pi_1, \pi_2)$, then $f' = \ang{f_1, f_2}$. Uniqueness of
$f'$ is immediate. Naturality of $\epsilon_X$ is immediate from the action of
$\Delta\Pi$ on arrows:
\[ \xymatrix{
(A \times B, A \times B) \ar[r] \ar[d]^{\Delta \Pi f} & (A, B) \ar[d]^{f} \\
(A' \times B', A' \times B') \ar[r] & (A', B')
} \]
$\Delta \Pi f = \Delta \Pi (f_1,f_2) = \Delta (f_1 \times f_2) = (f_1 \times
f_2, f_1 \times f_2)$, and so
$(\pi_1, \pi_2) \circ \Delta \Pi f = (\pi_1, \pi_2) \circ (f_1 \times
f_2, f_1 \times f_2) = (f_1, f_2) = (f_1,f_2) \circ (\pi_1, \pi_2)$.
\section{Notes}
Note that for the unit of the left adjunction and the counit of the right
adjunction, we had to choose ``non-obvious'' natural transformations,
whereas for the other two we had things ``built from identities''. In the
former two cases, there are actually other functions which would work,
notably $\eta_X = \ang{i_2, i_1}$ and $\epsilon_X = (\pi_2,\pi_1)$.
$\Delta \dashv \Pi$ has some reading as ``diagonals are free products''
though I do not find that terribly informative; I have yet to find
``coproducts are free diagonals'' a useful statement at all.
\end{document}