Skip to content

NER Webapp for Wiki Musician, using Stanford NLP, 命名实体识别

Notifications You must be signed in to change notification settings

nxt2045/musician-map-webapp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

音乐家人生轨迹和故事自动提取

  • middleware project

1.目的

  • 加强中间件技术的理解和应用;
  • 把本学期所学的技术进行深化和理解;
  • 从需求、设计到实现的综合工程能力;
  • 应用新技术、新框架的(特别是开源软件)的能力

2.内容

3.开发环境

  • OS:windows10 pro
  • IDE:Pycharm
  • Interpreter:Python 3.6.5
  • 备注:python工程具体运行步骤见README.md

4.功能介绍

4.1 功能概述

音乐家人生轨迹系统主要有两项功能,分别是提取介绍音乐家的文本中的实体和以地图的形式展示音乐家的人生轨迹。

4.2 轨迹提取

用户通过输入音乐家的名字,轨迹的开始时间和结束时间以及介绍音乐家的文本,系统通过调用python程序,提取其中的时间、人物、地点和事件等实体信息,以时间轴的形式展示。

4.3 轨迹展示

通过对Wiki百科上音乐家的数据进行收集,整理成数据库,用户可以通过点击音乐家的名字,在地图上查看音乐家的活动轨迹,以及在每个地点的生平事迹。

5.实现过程

5.1 数据集选取

爬取Wikipeakia中的所有古典音乐家生平

# 爬取时间段[古典音乐家]---------------------------
html = urlopen(
    "https://zh.wikipedia.org/wiki/%E5%8F%A4%E5%85%B8%E9%9F%B3%E6%A8%82%E4%BD%9C%E6%9B%B2%E5%AE%B6%E5%88%97"
    "%E8%A1%A8 "
).read().decode('utf-8')
# 获取子链接[某时间段]
soup = BeautifulSoup(html, features="html.parser")
i = 0
for node_div in soup.find_all("div", {"class": "hatnote navigation-not-searchable"}):
    period = node_div.find_previous("h2").find("span", {"class": "mw-headline"}).text
    print('\n')
    print('正在爬取' + period + '的音乐家 ...')
    # 爬取音乐家列表[某时间段]---------------------------
    html = urlopen(
        "https://zh.wikipedia.org" + node_div.a['href']
    ).read().decode('utf-8') 
    # 获取子链接[某音乐家]
    soup = BeautifulSoup(html, features="html.parser")
    for node_time in soup.find_all("span", {"class": "mw-headline"}):
        node_h2 = node_time.parent
        node_ul = node_h2.next_sibling
        while node_ul == '\n':
            node_ul = node_ul.next_sibling
        if node_ul.name == 'ul':
            nodes_a = node_ul.find_all("a")
            for node_a in nodes_a:
                if node_a == -1 or node_a is None:
                    continue
                else:
                    html_sub = urlopen(
                        "https://zh.wikipedia.org" + node_a['href']
                    ).read().decode('utf-8')  # if has Chinese, apply decode()
                    soup_sub = BeautifulSoup(html_sub, features="html.parser")
                    list_html = []
                    node_h1 = soup_sub.find("h1", {"class": "firstHeading"})
                    node_card = soup_sub.find("table", {"class": "infobox biography vcard"})
                    node_life = soup_sub.find("span", {"id": "生平"})
                    # 获取全名
                    [s.extract() for s in node_h1.find_all({"class": "mw-editsection"})]
                    title = th2zh(del_bracket(sbc2dbc(node_h1.text)))
                    file_path = out_path + '/' + title + ".txt"
                    print("https://zh.wikipedia.org" + node_a['href'])
                    if node_card == -1 or node_card is None or node_life == -1 or node_life is None:
                        print(title, ": no card/life")
                        continue
                    else:
                        # 获取生平html
                        node_next = node_life.parent.next_sibling
                        while node_next != -1 and node_next is not None and node_next.name != 'h2':
                            if node_next.name == 'p':
                                [s.extract() for s in node_next.find_all('sup')]
                                # 省略代码:替换全名
                                list_html.append(str(node_next))
                            node_next = node_next.next_sibling

5.2 数据预处理

5.2.1 通用处理

繁体转简体

def th2zh(str_data):
    if str_data is None:
        return str_data
    else:
        return zhconv.convert(str_data, 'zh-cn')

中英字符转换(解决字符不配对等问题)

def sbc2dbc(str_data):
    list_char = [('【', '['), ('】', ']'), ('「', '“'), ('」', "”"), (',', ','), ('?', '?'), ('!', '!'), ('(', '('),
                 (')', ')'), (':', ':'), ('-', '-'),('—','-')]
    for i in range(len(list_char)):
        str_data = str_data.replace(list_char[i][0], list_char[i][1])
    return str_data

转换干扰内容(解决对书名/谈话等内容错误的实体识别)

def short_data(sentence):
    ## 识别前简化书名/括号间内容
    int_symbol = 0
    sentence2 = ""
    str_symbol = ""
    list_symbol = []
    set_symbol = {('《', '》'), ('“', '”'), ('「', '」'), ('[', ']')}
    for c in sentence:
        if c in [tuple_symbol[0] for tuple_symbol in set_symbol]:
            int_symbol += 1
            if int_symbol == 1:
                sentence2 += c + "简化"
                str_symbol += c
                continue
        elif c in [tuple_symbol[1] for tuple_symbol in set_symbol]:
            int_symbol -= 1
            if int_symbol == 0:
                sentence2 += c
                str_symbol += c
                list_symbol.append(str_symbol)
                str_symbol = ""
                continue
        if int_symbol != 0:
            str_symbol += c
        if int_symbol == 0:
            sentence2 += c
    return sentence2, list_symbol

def long_data(para, list_symbol):
    ## 识别后还原
    if len(list_symbol) > 0:
        list_symbol.reverse()
        rev_list_symbol = list_symbol
        for i in range(len(para)):
            j = 0
            int_length = len(para[i])
            while j + 3 < int_length and len(rev_list_symbol) != 0:
                if para[i][j] == rev_list_symbol[-1][0] and para[i][j + 3] == rev_list_symbol[-1][-1]:
                    str_add = rev_list_symbol.pop()[1:-1]
                    para[i] = para[i][0:j + 1] + str_add + para[i][j + 3:]
                    j += len(str_add) + 1
                    int_length = len(para[i])
                else:
                    j += 1
    return para

分句

def cut_sent(para):
    para = re.sub('([。!?;\?])([^”’])', r"\1\n\2", para)  # 单字符断句符
    para = re.sub('(\.{6})([^”’])', r"\1\n\2", para)  # 英文省略号
    para = re.sub('(\…{2})([^”’])', r"\1\n\2", para)  # 中文省略号
    para = re.sub('([。!?\?][”’])([^,。!?\?])', r'\1\n\2', para)
    para = para.rstrip()
    para = para.split('\n')
    return para

5.2.2 时间预处理

中英数字转换

def zh2number(str_phrase):
    all_zh = re.findall('[一二两三四五六七八九零十百千万亿]+', str_phrase)
    map_num = {'零': 0, '一': 1, '二': 2, '两': 2, '三': 3, '四': 4, '五': 5, '六': 6, '七': 7, '八': 8, '九': 9, '十': 10,
               '百': 100, '千': 1000, '万': 10000, '亿': 100000000}

    for str_zh in all_zh:
        str_num = ""
        if not bool(set('十百千万亿').intersection(str_zh)):
            for i in range(len(str_zh)):
                val = map_num.get(str_zh[i])
                str_num += str(val)
        else:
            total = 0
            r = 1  # 表示单位:个十百千...
            for i in range(len(str_zh) - 1, -1, -1):
                val = map_num.get(str_zh[i])
                if val >= 10 and i == 0:  # 应对 十三 十四 十*之类
                    if val > r:
                        r = val
                        total = total + val
                    else:
                        r = r * val
                        # total =total + r * x
                elif val >= 10:
                    if val > r:
                        r = val
                    else:
                        r = r * val
                else:
                    total = total + r * val
            str_num = str(total)
        str_phrase = str_phrase.replace(str_zh, str_num, 1)
    return str_phrase

岁数转时间

def set_birth(self, sentences):
    set_birth = {'生于'}
    set_death = {'死于', '去世', '逝世', '病逝', '离开了人世', '离开人世', '离世', '辞世'}
    set_exp = {'之后', '后'}
    for sentence in sentences:
        if self.int_birth != 0:
            break
        if sentence != "":
            sentence, list_symbol = utils.short_data(sentence)
            for str_birth in set_birth:
                if str_birth in sentence:
                    mat_year4 = re.findall(r"(\d{4}年)", sentence)
                    if len(mat_year4) != 0:
                        self.int_birth = int((mat_year4[0].strip("年")).encode("utf-8"))
                        break
            for str_death in set_death:
                index = sentence.find(str_death)
                if index > 0 and sentence[index + len(str_death):index + len(str_death)] not in set_exp:
                    mat_year4 = re.findall(r"(\d{4}年)", sentence)
                    mat_old = re.findall(r"(\d{2,3}岁)", sentence)
                    if len(mat_year4) != 0 and len(mat_old) != 0:
                        int_death = int((mat_year4[-1].strip("年")).encode("utf-8"))
                        int_old = int((mat_old[-1].strip("岁")).encode("utf-8"))
                        self.int_birth = int_death - int_old
                        break

def age2year(birth, sent):
    year = re.findall('(\d{4}年)', sent)
    if len(year) == 0:
        ages = re.findall('(\d+岁)', sent)
        for i in range(len(ages)):
            age = int(ages[i][:-1])
            if len(birth) >= 4:
                sent = sent.replace(ages[i], str(int(birth[:4]) + age) + "年")
    return sent

标准化时间

match = re.findall('(\d{4}年)', line)
for i in range(len(match)):
    year = match[i]
    line = line.replace(year, year[:4])
match = re.findall('(\d{4})', line)
for i in range(len(match)):
    year = match[i]
    line = line.replace(year, year + '年')
match = re.findall('(\d{4}年至\d{4})', line)
for i in range(len(match)):
    year = match[i]
    line = line.replace(year, year.replace('至', '-'))
match = re.findall('(\d{4}年到\d{4})', line)
for i in range(len(match)):
    year = match[i]
    line = line.replace(year, year.replace('到', '-'))

5.2.3 人名预处理

替换代词

for i in range(len(line)):
                if line[i] == '他' or line[i] == '她' and i < len(line) - 1 and line[i + 1] != "们":
                    if i > 0 and line[i - 1] == "吉":
                        line1 += line[i]
                    else:
                        line1 += allname + line[i + 1:]
                        break
                else:
                    line1 += line[i]

人名补全(解决无法识别只出现名字的音乐家人名实体问题)

while True:
    index = line.find(firstname, start)
    if index == -1:
        line2 += line[start:]
        break
    elif index == 0:
        line2 += line[start:index] + allname
        start = index + len(firstname)
    elif index > 0 and line[index - 1] != '·':
        line2 += line[start:index] + allname
        start = index + len(firstname)
    else:
        line2 += line[start:index] + firstname
        start = index + len(firstname)

5.3 实体识别

采用StanfordNLP进行命名实体识别

  • StanfordNLP 结合了斯坦福团队参加CoNLL 2018使用的软件包,和Stanford CoreNLP软件的官方Python接口
  • StanfordNLP 包含进行文本分析的完整神经网络管道(neural network pipeline)
  • StanfordNLP 在big-treebanks官方评估指标LAS、MLAS和BLEX上获得了第2名、第1名和第3名,并且在所有指标上大幅度地优于低资源treebank类别的所有提交系统。
self.nlp = StanfordCoreNLP('http://localhost',  port=9000, lang='zh')
self.props = {'annotators': 'ner', 'pipelineLanguage': 'zh', 'outputFormat': 'xml'}
tuple_ners = self.nlp.ner(sentence)
# 转换原格式
ners = []
for tuple_ner in tuple_ners:
    ners.append(list(tuple_ner))
list_date, list_date_pos = self.__get_date(ners)
list_per, list_per_pos = self.__get_per(ners)
list_loc, list_loc_pos = self.__get_loc(ners)

时间实体识别

def __get_date(self, ners):
    # 提取时间实体
    list_date = []
    list_date_pos = []
    int_age = 0
    for i in range(len(ners)):
        if ners[i][1] == 'DATE' and len(set(ners[i][0]).difference(set(ners[i][0]).intersection(set_date))) != 0:
            ners[i][1] = 'TMP_DATE'
        if i > 0 and ners[i][1] == 'DATE' and ners[i - 1][1] == 'DATE':
            pop_word = list_date.pop()
            list_date.append(pop_word + ners[i][0])
        elif 0 < i < len(ners) - 1 and ners[i][0] == '的' and ners[i - 1][1] == 'DATE' and ners[i + 1][1] == 'DATE':
            pop_word = list_date.pop()
            list_date.append(pop_word + ners[i][0])
        elif ners[i][1] == 'DATE':
            list_date.append(ners[i][0])
            list_date_pos.append(int(i))
    # 补全年(月日)
    for i in range(len(list_date)):
        index = list_date[i].find('-')
        if index >= 0:
            if list_date[i][index - 1] in set_num:
                list_date[i] = list_date[i][:index] + list_date[i][-1] + list_date[i][index:]
    for i in range(len(list_date)):
        list_date[i] = list_date[i].replace("的", "")
        list_date[i] = list_date[i].replace("月份", "月")
        if "年" in list_date[i]:
            mat_year2 = re.findall(r"(\d{2}年)", list_date[i])
            mat_year3 = re.findall(r"(\d{3}年)", list_date[i])
            mat_year4 = re.findall(r"(\d{4}年)", list_date[i])
            set_year2 = set(mat_year2).difference(set(mat_year4)).difference(set(mat_year3))
            if len(mat_year4) != 0:
                self.last_year = mat_year4[-1]
            elif len(set_year2) != 0:
                for item in set_year2:
                    list_date[i] = list_date[i].replace(item, self.last_year[0] + self.last_year[1] + item)
        elif "月" in list_date[i] and self.last_year != "":
            list_date[i] = self.last_year + list_date[i]
    # 省略代码:剔除不满足时间实体
    return list_date_format, list_date_format_pos

人名实体识别

def __get_per(ners):
    list_per = []
    list_per_pos = []
    set_not = {'们'}
    set_name = {'.', '·', ' '}
    for i in range(len(ners)):
        if i + 2 < len(ners) and ners[i + 1][0] in set_name:
            if ners[i][1] == 'PERSON' \
                    or (ners[i][0].encode('UTF-8').isalpha() and len(ners[i][0]) == 1) \
                    or ners[i + 2][1] == 'PERSON' \
                    or (ners[i + 2][0].encode('UTF-8').isalpha() and len(ners[i + 2][0]) == 1) \
                    :
                ners[i][1] = 'PERSON'
                ners[i + 1][1] = 'PERSON'
                ners[i + 2][1] = 'PERSON'
        elif i + 2 < len(ners) and ners[i + 1][0][0] in set_name:
            if ners[i][1] == 'PERSON' \
                    or (ners[i][0].encode('UTF-8').isalpha() and len(ners[i][0]) == 1) \
                    or ners[i + 1][1] == 'PERSON':
                ners[i][1] = 'PERSON'
                ners[i + 1][1] = 'PERSON'
        elif i + 1 < len(ners) and ners[i][0][-1] in set_name:
            if ners[i][1] == 'PERSON' \
                    or ners[i + 1][1] == 'PERSON' \
                    or (ners[i + 1][0].encode('UTF-8').isalpha() and len(ners[i + 1][0]) == 1) \
                    :
                ners[i][1] = 'PERSON'
                ners[i + 1][1] = 'PERSON'
        if ners[i][1] == 'PERSON' and ners[i - 1][1] == 'PERSON':
            pop_word = list_per.pop()
            list_per.append(pop_word + ners[i][0])
        elif ners[i][1] == 'PERSON':
            list_per.append(ners[i][0])
            list_per_pos.append(int(i))
    # 省略代码:剔除不满足实体
    return list_per_format, list_per_format_pos

地名实体识别

for i in range(len(ners)):
    if ners[i][1] == 'CITY' or ners[i][1] == 'COUNTRY' and len(ners[i][0]) > 1:
        list_loc.append(ners[i][0])
        list_loc_pos.append(int(i))

5.4 地理编码

采用geopy进行地理编码

geocode = geolocator.geocode(loc, language='zh-CN', timeout=20)

5.5 可视化

将musician.sql文件导入数据库,构建SpringBoot项目,以网页的形式与用户进行交互。地图显示使用leaflet脚本进行展示,在ftl文件开头引入链接

<link rel="stylesheet" href="https://unpkg.com/leaflet@1.5.1/dist/leaflet.css"
          integrity="sha512-xwE/Az9zrjBIphAcBb3F6JVqxf46+CDLwfLMHloNu6KEQCAWi6HcDUbeOfBIptF7tcCzusKFjFw2yuvEpDL9wQ=="
          crossorigin=""/>
    <script src="https://unpkg.com/leaflet@1.5.1/dist/leaflet.js"
            integrity="sha512-GffPMF3RvMeYyc1LWMHtK8EbPv0iNZ8/oTtHPx9/cc2ILxQ+u905qIwdpULaqDkyBKgOaB57QTMg7ztg8Jm2Og=="
            crossorigin=""></script>

设置地图中心

var mymap = L.map('mapid').setView([51.505, -0.09], 13);

将地图块加入到网页中

L.tileLayer('https://api.tiles.mapbox.com/v4/{id}/{z}/{x}/{y}.png?access_token=pk.eyJ1IjoibWFwYm94IiwiYSI6ImNpejY4NXVycTA2emYycXBndHRqcmZ3N3gifQ.rJcFIG214AriISLbB6B5aw', {
        maxZoom: 18,
        attribution: 'Map data &copy; <a href="https://www.openstreetmap.org/">OpenStreetMap</a> contributors, ' +
            '<a href="https://creativecommons.org/licenses/by-sa/2.0/">CC-BY-SA</a>, ' +
            'Imagery © <a href="https://www.mapbox.com/">Mapbox</a>',
        id: 'mapbox.streets'
    }).addTo(mymap);

将数据库中的每条记录对应到地图上的相应的点上,并将点按时间顺序连线

points = []

<#list location as s>
    point = []
    <#list s?split(",") as a>
        point.push(parseFloat(${a}))
    </#list>
    L.marker(point).addTo(mymap)
    .bindPopup("${desc[s_index]}").openPopup();
    points.push(point)
</#list>

L.polyline([points]).addTo(mymap);

设置点击地图上图标按钮弹出信息框的脚本

var popup = L.popup();

function onMapClick(e) {
    popup
        .setLatLng(e.latlng)
        .setContent("You clicked the map at " + e.latlng.toString())
        .openOn(mymap);
}
mymap.on('click', onMapClick);

5.6 调用Python脚本

执行start.bat脚本,开启stanford-corenlp-full数据库,在UploadController.java文件中按照项目目录设置读取python文件的绝对路径。例如

String pyPath = "E:\\Software\\Middleware\\Musican\\Musician\NLP-zh";  // python 工程路径
String outPath = filePath + "\\result\\" + file.getOriginalFilename(); // 已处理的文本txt路径

调用python脚本函数

public List<String> mainPy(String pyPath, String inPath, String outPath) {
    PyModel pyModel = new PyModel();
    pyModel.analyse(pyPath, inPath, outPath);
    List<String> allLine = new ArrayList<>();
    File file = new File(outPath);
    try {
        BufferedReader in = new BufferedReader(new FileReader(outPath));
        String str;
        while ((str = in.readLine()) != null) {
            allLine.add(str);
        }
    } catch (IOException e) {
        e.printStackTrace();            
        }
    return allLine;
}

具体执行python命令

String command = pyPath + "\\venv\\Scripts\\python.exe " + pyPath + "\\py2java.py" + " " + inPath + " " + outPath;
Runtime runtime = Runtime.getRuntime();
try {
    Process process=runtime.exec(command);
    BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(process.getInputStream()));
    while ((line = bufferedReader.readLine()) != null) {
        System.out.println(line);
    }
} catch (IOException e) {
    e.printStackTrace();
}

6.效果展示

开始界面,点击Strat From Here进入轨迹展示模块,点击Explore进入轨迹提取模块。

进入地图展示模块,选择一位音乐家查看他的生平轨迹

下拉框中是所有的179位音乐家的名字,按照字母顺序排列,选好音乐家后点击Start按钮可以浏览该音乐家的人生轨迹

下拉框下方随机展示6位音乐家的名字可以点击按钮浏览该音乐家的人生轨迹,点击Next Page按钮可以换一批音乐家的名字

选择音乐家后以地图的形式呈现该音乐家的人生轨迹,点击图中的坐标会弹出该地点的相关信息,第一行是时间信息,第二行是人物信息,第三行是地点信息,最后是在该地点的事件描述。

点击首页的Explore按钮,进入上传音乐家信息界面,需要输入音乐家姓名,轨迹的开始时间和结束时间,介绍的文本必须以txt的格式上传。

选择想要查看的轨迹的时间区间

以时间轴的方式展现上传的该音乐家的轨迹,如果选择轨迹区间内没有该音乐家的活动,则显示全部的事件信息。

About

NER Webapp for Wiki Musician, using Stanford NLP, 命名实体识别

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published