-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRBTree.ivo
200 lines (162 loc) · 6.44 KB
/
RBTree.ivo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import ()
// Red-black trees, based on [Okasaki 1999] and [Germane and Might 2014].
import Prelude.Ord._
import Prelude.Boolean._
import Prelude.Option._
trait OrderedSet = {
trait Color = {
trait R
trait B
trait BB // double black... used for deletion but should never be exposed
}
trait Tree (a) = {
trait C = Color.R with Color.B with Color.BB
trait E
trait EE // double empty... used for deletion but should never be exposed
trait T (color: C) (left: Tree a) (value: a) (right: Tree a)
}
import Color._
import (Tree _)._
import util._
trait Set (a) = Tree (a)
trait Empty = E
fun singleton (x) = T R E x E
fun insert (x) (s) = {
fun ins (E) = T R E x E
fun ins (T color a y b) = cond {
x < y -> balance color (ins a) y b
x > y -> balance color a y (ins b)
_ -> T color a y b
}
fun blacken (T R (T R a x b) y c) = T B (T R a x b) y x
fun blacken (T R a x (T R b y c)) = T B a x (T R b y c)
fun blacken (t) = t
blacken (ins s)
}
fun delete (x) (s) = {
fun del (E) = E
fun del (T R E y E) = cond {
x == y -> E
_ -> T R E y E
}
fun del (T B E y E) = cond {
x == y -> EE
_ -> T B E y E
}
fun del (T B (T R E y E) z E) = cond {
x < z -> T B (del (T R E y E)) z E
x > z -> T B (T R E y E) z E
_ -> T B E y E
}
fun del (T color a y b) = cond {
x < y -> rotate color (del a) y b
x > y -> rotate color a y (del b)
_ -> {
val (y', b') = min_del b
rotate color a y' b'
}
}
fun redden (T B (T B a x b) y (T B c z d)) = T R (T B a x b) y (T B c z d)
fun redden (t) = t
del (redden s)
}
fun (x) in (E) = False
fun (x) in (T _ a y b) = cond {
x < y -> x in a
x > y -> x in b
_ -> True
}
// Backward version of `in`
fun (! x) in (? T _ a y b) = (? True)
where x in a || x == y || x in b
// `insert` and `delete` are inverses
fun insert (? x) (! delete x s) = (? s)
fun delete (? x) (! insert x s) = (? s)
// But they're also idempotent
fun insert (? x) (! s) = (? s)
fun delete (? x) (! s) = (? s)
// Convert to a list.
fun (E) toList = []
fun (T a x b) toList = a toList ++ [x] ++ b toList
fun fromList ([]) = E
fun fromList (x::xs) = insert x (fromList xs)
// union
fun (E) ++ (t) = t
fun (T a x b) ++ (E) = (T a x b)
fun (T a x b) ++ (t) = a ++ (insert x b) ++ t
// min and max in the set
fun min (E) = None
fun min (T E x b) = Some x
fun min (T a x b) = min a
fun max (E) = None
fun max (T a x E) = Some x
fun max (T a x b) = max b
fun next (E) = None
fun next (T a y b) (x) = cond {
x < y -> (next a x) else y
x > y -> next b x
_ -> min b
}
fun prev (E) = None
fun prev (T a y b) (x) = cond {
x < y -> prev b x
x > y -> (prev b x) else y
_ -> max a
}
// map may destroys the structure if not monotonic
fun map (f) (t) = E
fun map (f) (T a x b) = insert (f x) (map f (a ++ b))
// mapping a monotonic function preserves the structure and is generally faster
fun mapMonotonic (f) (E) = E
fun mapMonotonic (f) (T a x b) = T (mapMonotonic f a) (f x) (mapMonotonic f b)
fun filter (p) (t) = collect (fun (x) -> if (p x) Some x else None) t
fun collect (f) (E) = E
fun collect (f) (T a x b) = {
val t = (collect f a) ++ (collect f b)
match f x {
None -> t
Some y -> insert y t
}
}
fun foldTree (z) (f) (E) = z
fun foldTree (z) (f) (T a x b) = f (fold z f a) x (fold z f b)
fun foldMap (m) (f) (t) = foldTree m.mzero (fun (a) (x) (b) -> m.mappend a (m.mappend (f x) b)) t
fun size (t) = foldMap Monoid.Sum (fun (x) -> 1) t
fun sum (t) = foldMap Monoid.Sum id t
fun product (t) = foldMap Monoid.Product id t
fun all (p) (t) = foldMap Monoid.All p t
fun any (p) (t) = foldMap Monoid.Any p t
fun foldl (z) (f) (E) = z
fun foldl (z) (f) (T a x b) = foldl (f (foldl z f a) x) f b
fun foldr (z) (f) (E) = z
fun foldr (z) (f) (T a x b) = foldr z f (f x (foldr z f b))
trait util = {
fun balance (B) (T R (T R a x b) y c) (z) (d) = T R (T B a x b) y (T B c z d)
fun balance (B) (T R a x (T R b y c)) (z) (d) = T R (T B a x b) y (T B c z d)
fun balance (B) (a) (x) (T R (T R b y c) z d) = T R (T B a x b) y (T B c z d)
fun balance (B) (a) (x) (T R b y (T R c z d)) = T R (T B a x b) y (T B c z d)
fun balance (BB) (T R a x (T R b y c)) (z) (d) = T B (T B a x b) y (T B c z d)
fun balance (BB) (a) (x) (T R (T R b y c) z d) = T B (T B a x b) y (T B c z d)
fun balance (color) (a) (x) (b) = T color a x b
fun rotate (R) (T BB a x b) (y) (T B c z d) = balance B (T R (T B a x b) y c) z d
fun rotate (R) (EE) (y) (T B c z d) = balance B (T R E y c) z d
fun rotate (R) (T B a x b) (y) (T BB c z d) = balance B a x (T R b y (T B c z d))
fun rotate (R) (T B a x b) (y) (EE) = balance B a x (T R b y E)
fun rotate (B) (T BB a c b) (y) (T B c z d) = balance BB (T R (T B a x b) y c) z d
fun rotate (B) (EE) (y) (T B c z d) = balance BB (T R E y c) z d
fun rotate (B) (T B a x b) (y) (T BB c z d) = balance BB a x (T R b y (T B c z d))
fun rotate (B) (T B a x b) (y) (EE) = balance BB a x (T R b y E)
fun rotate (B) (T BB a w b) (x) (T R (T B c y d) z e) = T B (balance B (T R (T B a w b) x c) y d) z e
fun rotate (B) (EE) (x) (T R (T B c y d) z e) = T B (balance B (T R E x c) y d) z e
fun rotate (B) (T R a w (T B b x c)) (y) (T B d z e) = T B a w (balance B b x (T R c y (T B d z e)))
fun rotate (B) (T R a b (T B b x c)) (y) (EE) = T B a w (balance B b x (T R c y E))
fun rotate (color) (a) (x) (b) = T color a x b
fun min_del (T R E x E) = (x, E)
fun min_del (T B E x E) = (x, EE)
fun min_del (T B E x (T R E y E)) = (x, T B E y E)
fun min_del (T color a x b) = {
val (x', a') = min_del a
(x', rotate color a' x b)
}
}
}