Skip to content

Interactive exploration of hyperparameter tuning results with ipywidget and plotly in jupyter notebook.

Notifications You must be signed in to change notification settings

oaoni/HyperInteractive

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HyperInteractive

Interactive ipywidget and plotly framework for exploring hyperparameter tuning results

Hyper Explore Demo

Requirements

plotly == 4.12.0
ipywidgets == 7.5.1

Getting started

Clone repo and cd into the project directory

$ git clone https://github.com/oaoni/HyperInteractive.git
$ cd HyperInteractive

Launch in a classic jupyter notebook

$ jupyter notebook

Usage

import pandas as pd
from interactivehyper import hyperExplore

data = pd.read_csv('./demo/modeltune.csv')

initial_axis = ['best_test_loss','best_test_corr']
initial_surface_axis = ['mu','alpha','best_test_corr']
legend_group = 'model'
hover_items = ['learning_rate','alpha','mu']

tab = hyperExplore(data,initial_axis,initial_surface_axis,legend_group,hover_items)
tab

About

Interactive exploration of hyperparameter tuning results with ipywidget and plotly in jupyter notebook.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages