Warning
This component is still under development.
Description TBD
Tool Info | Links |
---|---|
Original Tool | https://github.com/irmlma/next-location-prediction |
Current Tool Version | 33e17ae3f857b22a6164ecb5f9c384f62b279b34 |
odtp new odtp-component-entry \
--name odtp-next-location-prediction \
--component-version 0.0.3 \
--repository https://github.com/odtp-org/odtp-next-location-prediction
RUN_NAME=
Parameter | Description | Default Value | Options |
---|---|---|---|
TRAINING | Train 'networkName' NN with 'train_dataset' in 'data_save_root' if true, use 'pretrain_file' NN to test data from 'inference_data_dir' in 'data_save_root' if false | True | null |
RUN_NAME | Output folder name | dtepr_mhsa | Any string |
TRAIN_DATASET | Dataset name for training, shall be available in 'data_save_root' | dtepr | null |
INFERENCE_DATA_DIR | Directory containing all datasets for inference, shall be available in 'data_save_root' | inference | null |
PRETRAIN_DIR | Directory containing the trained NN weights, shall be available in 'run_save_root' | dtepr_mhsa_demo | null |
IF_EMBED_TIME | Whether to embed time information | True | null |
VERBOSE | Verbose output | True | null |
DEBUG | Debug mode | False | null |
BATCH_SIZE | Batch size for training | 256 | null |
PRINT_STEP | Steps between printing training progress | 10 | null |
NUM_WORKERS | Number of worker threads for data loading | 0 | null |
BASE_EMB_SIZE | Base embedding size | 64 | null |
NETWORK_NAME | Name of the network | mhsa | mhsa, lstm |
FC_DROPOUT | Dropout rate for fully connected layers | 0.1 | null |
MHSA_NUM_ENCODER_LAYERS | Number of encoder layers in MHSA | 4 | null |
MHSA_NHEAD | Number of attention heads in MHSA | 8 | null |
MHSA_DIM_FEEDFORWARD | Feedforward dimension in MHSA | 256 | null |
MHSA_DROPOUT | Dropout rate in MHSA | 0.1 | null |
LSTM_ATTENTION | Whether to include self-attention layer in LSTM | False | null |
LSTM_RNN_TYPE | Type of RNN (LSTM or GRU) | LSTM | LSTM, GRU |
LSTM_HIDDEN_SIZE | Hidden size for LSTM | 128 | null |
OPTIMIZER | Optimizer type | Adam | Adam, SGD |
OPTIMIZER_MAX_EPOCH | Maximum number of epochs for optimizer | 100 | null |
OPTIMIZER_LR | Learning rate for optimizer | 0.001 | null |
OPTIMIZER_WEIGHT_DECAY | Weight decay for optimizer | 0.000001 | null |
OPTIMIZER_ADAM_BETA1 | Beta1 parameter for Adam optimizer | 0.9 | null |
OPTIMIZER_ADAM_BETA2 | Beta2 parameter for Adam optimizer | 0.999 | null |
OPTIMIZER_SGD_MOMENTUM | Momentum for SGD optimizer | 0.98 | null |
OPTIMIZER_NUM_WARMUP_EPOCHS | Number of warmup epochs for optimizer | 2 | null |
OPTIMIZER_NUM_TRAINING_EPOCHS | Number of training epochs for optimizer | 50 | null |
OPTIMIZER_PATIENCE | Patience for learning rate decay | 3 | null |
OPTIMIZER_LR_STEP_SIZE | Step size for learning rate decay | 1 | null |
OPTIMIZER_LR_GAMMA | Gamma value for learning rate decay | 0.1 | null |
To be developed
File/Folder | Description |
---|---|
A | B |
To be developed
File/Folder | Description |
---|---|
A | B |
- Build the dockerfile
docker build -t odtp-next-location-prediction .
- Create
odtp-input
andodtp-output
files.
3a. Run the following command. Mount the correct volumes for input/output folders.
docker run -it --rm \
-v $PWD/odtp-input:/odtp/odtp-input \
-v $PWD/odtp-output:/odtp/odtp-output \
--env-file .env \
odtp-next-location-prediction
docker run -it --rm -v $PWD/odtp-input:/odtp/odtp-input -v $PWD/odtp-output:/odtp/odtp-output --env-file .env odtp-next-location-prediction
3b. If you want to run docker with Nvidia GPU compatibility:
docker run -it --rm \
-v $PWD/odtp-input:/odtp/odtp-input \
-v $PWD/odtp-output:/odtp/odtp-output \
--gpus all \
--env-file .env \
odtp-next-location-prediction
- Run the docker command overwritting the entrypoint:
docker run -it --rm \
--entrypoint bash
odtp-next-location-prediction
-
Configure the environment variables with the desired configuration, and place the input files on
/odtp/odtp-input
. -
Execute the commands on
app.sh
one by one.
CSFM / SDSC