-
Notifications
You must be signed in to change notification settings - Fork 0
/
tl3-jpn.qmd
589 lines (505 loc) · 19 KB
/
tl3-jpn.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
```{r jpn_ctry}
ctry <- "JPN"
ctry2 <- "Japan"
```
# Japan
```{r jpn_pkgs, warning=FALSE}
library(oecdcountryprofiles)
library(dplyr)
library(tidyr)
library(ggplot2)
library(patchwork)
library(oecdplot)
library(knitr)
library(readxl)
library(janitor)
library(stringr)
library(readr)
library(tintin)
library(scales)
library(plotly)
library(glue)
load_oecd_fonts()
missing_reg <- c("ITG2F")
excl_countries <- c("LUX", "IRL")
clrs <- tintin_colours$the_black_island
clrs2 <- tintin_colours$the_blue_lotus
clrs3 <- tintin_colours$the_red_sea_sharks
clrs4 <- tintin_colours$the_calculus_affair
clrs5 <- tintin_colours$red_rackhams_treasure
```
<table border="1" style="width:75%;margin-left:auto;margin-right:auto;">
<tr>
<th colspan="2" style="background:#fff9e6; padding:10px;font-size:9.0pt;" valign="center">
OECD Regional Outlook
</th>
</tr>
<tr>
<td>
<img style="padding:10px;" src="RO2023_cover.jpg" alt="OECD Regional Outlook 2023" height="200"/>
</td>
<td>
<p style="padding:10px;font-size:9.0pt;">The OECD <a href="https://www.oecd-ilibrary.org/urban-rural-and-regional-development/oecd-regional-outlook_2dafc8cf-en" target="_blank"><i style="color:#0d6efd">Regional Outlook</i></a> reviews recent trends, policy developments, and prospects across OECD regions, including the underlying causes driving regional inequalities in performance and well-being. The report offers evidence, guidance and policy recommendations on how to improve competitiveness and productivity, promote inclusive growth, accelerate the net-zero transition and raise well-being standards through effective regional development policy and multi-level governance.</p>
</td>
</tr>
</table>
## Overview
```{r jpn_tbl}
read_html_table(ctry)
```
## Regional inequality trends
```{r jpn_fig1}
iso3_g20 <- read_csv("data/ISO_3_G20.csv") %>%
clean_names() %>%
rename(iso3 = iso_3)
top_bottom_c <- read_excel("data/top_bottom_gdppc_w_agg.xlsx") %>%
filter(TIME < 2021) %>%
clean_names()
gdp_pop_00_20 <- read_csv("data/gdp_pop_00_20_imputed_agg_l.csv") %>%
filter(TIME < 2021) %>%
clean_names() %>%
select(-x1) %>%
left_join(iso3_g20, by = "iso3") %>%
filter(!reg_id %in% missing_reg, !iso3 %in% excl_countries) %>%
mutate(
metro_large = ifelse(metro_large != "Metropolitan large", "Non-large", metro_large),
metro_far = ifelse(metro_far != "Far from a FUA>250K", "Close", metro_far)
) %>%
bind_rows(
read_csv("data/gdp_pop_tl2_00_20_imputed_l.csv") %>%
filter(TIME < 2021) %>%
clean_names() %>%
select(time, reg_id, iso3, gdp, pop, gdp_pc, regional_name_eng = reg_name)
)
summary_theil_tl3 <- read_csv("data/theil_gdppc_country_00_20_wCHE-CHL.csv") %>%
filter(TIME < 2021) %>%
clean_names() %>%
filter(level == "gdppc_tl3") %>%
select(-c(x1, level))
summary_stats <- gdp_pop_00_20 %>%
group_by(iso3, time) %>%
summarise(mean_gdp_pc = mean(gdp_pc, na.rm = TRUE)) %>%
ungroup() %>%
left_join(top_bottom_c, by = c("iso3", "time")) %>%
mutate(
top_bottom = top_20_gdppc / bottom_20_gdppc,
top_mean = top_20_gdppc / mean_gdp_pc,
bottom_mean = bottom_20_gdppc / mean_gdp_pc
)
summary_stats <- summary_stats %>%
left_join(summary_theil_tl3, by = c("iso3", "time"))
min_y <- summary_theil_tl3 %>%
filter(iso3 == ctry) %>%
pull(time) %>%
min()
if (ctry == "CHE") {
min_y <- 2008
}
if (ctry == "HUN") {
min_y <- 2001
}
if (ctry == "TUR") {
min_y <- 2004
}
index_200x <- summary_stats %>%
filter(time == min_y) %>%
pivot_wider(
id_cols = "iso3",
names_from = "time",
values_from = -c(time, iso3)
)
colnames(index_200x) <- gsub("_200[0-9]", "_200x", colnames(index_200x))
summary_stats_index <- summary_stats %>%
left_join(index_200x, by = "iso3") %>%
mutate(
index_gdppc = mean_gdp_pc / mean_gdp_pc_200x,
index_bottom = bottom_mean / bottom_mean_200x,
index_top = top_mean / top_mean_200x,
index_theil = theil / theil_200x,
index_top_mean = top_mean / top_mean_200x,
index_bottom_mean = bottom_mean / bottom_mean_200x,
index_top_bottom = top_bottom / top_bottom_200x
) %>%
select(
iso3,
time,
index_gdppc,
index_bottom,
index_top_mean,
index_top_bottom,
index_bottom_mean,
index_top,
index_theil
)
summary_wide <- summary_stats_index %>%
pivot_longer(cols = -c(time, iso3), names_to = "index") %>%
mutate(
labels_index = case_when(
index == "index_bottom" ~ "Bottom 20%",
index == "index_top" ~ "Top 20%",
index == "index_bottom_mean" ~ "Bottom 20%/Mean",
index == "index_top_mean" ~ "Top 20%/Mean",
index == "index_theil" ~ "Theil index",
index == "index_gdppc" ~ "Mean GDP per capita",
index == "index_top_bottom" ~ "Top 20%/Bottom 20%"
)
) %>%
left_join(iso3_g20, by = "iso3")
lev_3 <- c(
"Theil index",
"Top 20%/Mean",
"Bottom 20%/Mean",
"Mean GDP per capita"
)
df_fig1 <- summary_wide %>%
filter(iso3 == ctry, labels_index %in% lev_3, time >= min_y) %>%
pivot_wider(
names_from = index,
values_from = value
) %>%
mutate(
index_label = factor(labels_index, levels = lev_3)
)
fig1 <- df_fig1 %>%
ggplot(aes(x = time)) +
geom_line(aes(
y = index_gdppc,
colour = index_label
), linetype = "dashed", linewidth = 1.2) +
geom_line(aes(
y = index_top_mean,
colour = index_label
), linetype = "dashed", linewidth = 1.2) +
geom_line(aes(
y = index_bottom_mean,
colour = index_label
), linetype = "dashed", linewidth = 1.2) +
geom_line(aes(
y = index_theil,
colour = index_label
), linewidth = 1.2) +
geom_hline(yintercept = 1, color = "lightgrey", linetype = "dashed") +
scale_colour_manual(values = clrs2[c(1, 3, 4, 2)]) + # evil hack to match TL2 colours
scale_x_continuous(expand = c(0, 0), breaks = seq(from = min(df_fig1$time), to = max(df_fig1$time), by = 5)) +
labs(
title = "Figure 1: Trends in GDP per capita inequality indicators,\nTL3 OECD regions",
x = "",
y = "Statistic (2000=1)",
linetype = "",
colour = ""
) +
# theme_oecd(base_size = 10) +
# theme(plot.title = element_text(size = 13, hjust = 0, margin = margin(0, 0, 10, 0))) +
theme_minimal()
```
```{r jpn_fig1_summary}
theil_chg <- summary_wide %>%
filter(
index == "index_theil",
iso3 == ctry
) %>%
filter(!is.na(value)) %>%
filter(time %in% range(time)) %>%
arrange(time) %>%
mutate(diff = value - lag(value)) %>%
filter(time == max(time)) %>%
pull(diff)
theil_chg_txt <- ifelse(theil_chg > 0, "an increase", "a decline")
theil_max <- summary_wide %>%
filter(
index == "index_theil",
iso3 == ctry
) %>%
filter(!is.na(value)) %>%
filter(value == max(value)) %>%
pull(time) %>%
as.integer()
polarization_pct <- summary_wide %>%
filter(
index == "index_top_mean",
iso3 == ctry
) %>%
filter(!is.na(value)) %>%
filter(time %in% range(time)) %>%
arrange(time) %>%
mutate(diff = lead(value) - value) %>%
filter(time == min(time)) %>%
pull(diff) %>%
round(3)
polarization_txt <- ifelse(polarization_pct > 0, "higher", "lower")
polarization_txt2 <- ifelse(polarization_txt == "higher", "increased", "decreased")
polarization_yrs <- summary_wide %>%
filter(
index == "index_top_mean",
iso3 == ctry
) %>%
filter(time %in% range(time)) %>%
pull(time) %>%
as.integer()
polarization_2_pct <- summary_wide %>%
filter(
index == "index_bottom_mean",
iso3 == ctry
) %>%
filter(time %in% range(time)) %>%
arrange(time) %>%
mutate(diff = lead(value) - value) %>%
filter(time == min(time)) %>%
pull(diff) %>%
round(3)
polarization_2_txt <- ifelse(polarization_2_pct > 0, "higher", "lower")
polarization_2_txt2 <- ifelse(polarization_2_txt == "higher", "convergence", "divergence")
# needs the: USA, UK, Czech Rep, Slovak Rep, Netherlands
ctry3 <- if (any(ctry %in% c("USA", "GBR", "CZE", "SVK", "NLD"))) {
paste("The", ctry2)
} else {
ctry2
}
ctry4 <- if (any(ctry %in% c("USA", "GBR", "CZE", "SVK", "NLD"))) {
paste("the", ctry2)
} else {
ctry2
}
paragraph_theil <- if (any(ctry %in% c("GBR"))){
glue("{ ctry3 } experienced { theil_chg_txt } in the Theil index of GDP per capita over 2000-2020. Inequality reached its maximum in { theil_max }. The figures are normalized, with values in the year {as.integer(min_y)} set to 1.
The Top 20%/Mean ratio was { paste(abs(polarization_pct), polarization_txt) } in { max(polarization_yrs) } compared to { min(polarization_yrs) }, indicating { polarization_txt2 } polarisation. The Bottom 20%/Mean ratio did not change in the same period.")
} else{
glue("{ ctry3 } experienced { theil_chg_txt } in the Theil index of GDP per capita over 2000-2020. Inequality reached its maximum in { theil_max }. The figures are normalized, with values in the year {as.integer(min_y)} set to 1.
The Top 20%/Mean ratio was { paste(abs(polarization_pct), polarization_txt) } in { max(polarization_yrs) } compared to { min(polarization_yrs) }, indicating { polarization_txt2 } polarisation. The Bottom 20%/Mean ratio was { paste(abs(polarization_2_pct), polarization_2_txt) } in the same period, indicating bottom { polarization_2_txt2 }.")}
```
`r paragraph_theil`
```{r jpn_fig1_1}
# no interactivity
# fig1
# interactivity
ggplotly(fig1) %>%
config(displayModeBar = F)
```
<div class="oecdnote">
**Note**: Top/bottom calculated as population equivalent (top/bottom regions with at least 20% of the population). The interpretation of top/bottom 20% GDP per capita is that 20% of the population in the country holds 20% of the value. Top 20%/Mean calculated as mean GDP per capita in top 20% regions over mean TL3 GDP per capita in a given year. Bottom 20%/Mean calculated as mean TL3 GDP per capita in bottom 20% regions over mean TL3 GDP per capita in a given year. To improve data consistency, input series are aggregated when TL3 regions are part of the same FUA. To improve time series, TL3 missing values have been estimated based on the evolution at higher geographic level.<br>
**Source**: OECD Regional Database (2022).
</div>
<br>
<br>
```{r jpn_fig2}
# Load file with top/bottom 20% data (provided by Eric using weights)
top_bottom_c_oecd <- read_excel("data/top_bottom_gdppc_w_agg.xlsx") %>%
clean_names()
# Load GDP_PC data for 2000-2020 aggregated by metros sharing the same FUA (missings imputed by Eric)
gdp_pop_00_20 <- read_csv("data/gdp_pop_00_20_imputed_agg_l.csv") %>%
clean_names() %>%
select(-x1) %>%
filter(!reg_id %in% missing_reg, !iso3 %in% excl_countries) %>%
mutate(
metro_large = ifelse(metro_large != "Metropolitan large", "Non-large", metro_large),
metro_far = ifelse(metro_far != "Far from a FUA>250K", "Close", metro_far)
) %>%
drop_na(iso3)
# Process data ------------------------------------------------------------
gdppc_metro <- gdp_pop_00_20 %>%
group_by(metro_lev1, time, iso3) %>%
summarise(mean_gdppc = mean(gdp_pc), .groups = "drop") %>%
ungroup() %>%
filter(time %in% c(2000, 2020)) %>%
pivot_wider(id_cols = c(time, iso3), names_from = metro_lev1, values_from = mean_gdppc) %>%
mutate(
gap = Metropolitan / `Non-metropolitan`,
type = "Metropolitan/Non-metropolitan"
) %>%
select(time, iso3, gap, type)
gdppc_large <- gdp_pop_00_20 %>%
group_by(metro_large, time, iso3) %>%
summarise(mean_gdppc = mean(gdp_pc, na.rm = T), .groups = "drop") %>%
ungroup() %>%
filter(time %in% c(2000, 2020)) %>%
pivot_wider(id_cols = c(time, iso3), names_from = metro_large, values_from = mean_gdppc) %>%
clean_names() %>%
mutate(
gap = metropolitan_large / non_large,
type = "Large metropolitan/Non-large"
) %>%
select(time, iso3, gap, type) %>%
drop_na(gap)
gdppc_far <- gdp_pop_00_20 %>%
group_by(metro_far, time, iso3) %>%
summarise(mean_gdppc = mean(gdp_pc, na.rm = T), .groups = "drop") %>%
ungroup() %>%
filter(time %in% c(2000, 2020)) %>%
pivot_wider(id_cols = c(time, iso3), names_from = metro_far, values_from = mean_gdppc) %>%
clean_names() %>%
mutate(
gap = close / far_from_a_fua_250k,
type = "Near/Far from a FUA >250K"
) %>%
select(time, iso3, gap, type) %>%
drop_na(gap)
gaps <- bind_rows(gdppc_metro, gdppc_far, gdppc_large)
mean_gaps <- gaps %>%
filter(time == 2020) %>%
group_by(time, type) %>%
summarise(gap = mean(gap, na.rm = TRUE)) %>%
ungroup() %>%
mutate(time = "OECD mean gap, 2020") %>%
select(time, type, gap)
country <- gaps %>%
filter(iso3 == ctry) %>%
select(-iso3)
country <- bind_rows(
country %>%
mutate(time = as.character(time)),
mean_gaps
) %>%
mutate(time = factor(time))
lev_type <- c("Large metropolitan/Non-large", "Metropolitan/Non-metropolitan", "Near/Far from a FUA >250K")
fig2 <- country %>%
mutate(
type = factor(type, levels = lev_type)
) %>%
rename(
series = type
) %>%
ggplot() +
geom_col(
# aes(x = time, y = gap, fill = type),
aes(x = series, y = gap, fill = time),
linewidth = 1.5,
position = position_dodge2(preserve = "single")
) +
labs(
x = "", y = "Gap",
title = "Figure 2: GDP per capita gap by type of region\ncompared to the OECD average"
) +
# theme_oecd(base_size = 10) +
# theme(plot.title = element_text(size = 13, hjust = 0, margin = margin(0, 0, 10, 0))) +
theme_minimal() +
theme(
# put x-ticks with 30 degree angle
axis.text.x = element_text(angle = 30, hjust = 1)
) +
scale_fill_manual(values = clrs, name = "")
```
```{r jpn_fig2_2}
gdp_gap <- country %>%
filter(
time == 2020,
type == "Large metropolitan/Non-large"
) %>%
pull(gap) %>%
round(3)
gdp_2_gap <- country %>%
filter(
time == "OECD mean gap, 2020",
type == "Large metropolitan/Non-large"
) %>%
pull(gap) %>%
round(3)
gdp_gap_lag <- country %>%
filter(
time == 2000,
type == "Large metropolitan/Non-large"
) %>%
pull(gap) %>%
round(3)
gdp_gap_txt <- ifelse(gdp_gap - gdp_gap_lag > 0, "increased", "decreased")
gdp_gap_pct <- abs(round(gdp_gap - gdp_gap_lag, 3))
gdp_3_gap <- country %>%
filter(
time == 2020,
type == "Metropolitan/Non-metropolitan"
) %>%
pull(gap) %>%
round(3)
gdp_3_gap_lag <- country %>%
filter(
time == 2000,
type == "Metropolitan/Non-metropolitan"
) %>%
pull(gap) %>%
round(3)
gdp_4_gap <- country %>%
filter(
time == "OECD mean gap, 2020",
type == "Metropolitan/Non-metropolitan"
) %>%
pull(gap) %>%
round(3)
gdp_2_gap_txt <- ifelse(gdp_3_gap - gdp_3_gap_lag > 0, "increased", "decreased")
gdp_2_gap_pct <- abs(round(gdp_3_gap - gdp_3_gap_lag, 3))
gdp_5_gap <- country %>%
filter(
time == 2020,
type == "Near/Far from a FUA >250K"
) %>%
pull(gap) %>%
round(3)
gdp_5_gap_lag <- country %>%
filter(
time == 2000,
type == "Near/Far from a FUA >250K"
) %>%
pull(gap) %>%
round(3)
gdp_3_gap_txt <- ifelse(gdp_5_gap - gdp_5_gap_lag > 0, "increased", "decreased")
gdp_3_gap_pct <- abs(round(gdp_5_gap - gdp_5_gap_lag, 3))
```
```{r jpn_next paragraph}
next_paragraph <- if (any(ctry %in% c("LTU", "EST", "FIN", "LVA", "NZL", "NOR", "SVK", "SVN", "CHE"))) {
glue("There is no data for the gap in GDP per capita between large metropolitan and non-large metropolitan regions for 2000 and 2020.")
} else {
glue("In 2020, the gap in GDP per capita between large metropolitan and non-large metropolitan regions was { gdp_gap }. For reference, the same value for OECD was { gdp_2_gap }. This gap { gdp_gap_txt } by { gdp_gap_pct } percentage points between 2000 and 2020.")
}
last_paragraph <- if (any(ctry %in% c("KOR", "NLD"))) {
glue("There is no data for the gap in GDP per capita between regions near and far a Functional Urban Area (FUA) of more than 250 thousand inhabitants for 2000 and 2020.")
} else {
glue("In turn, the gap in GDP per capita between regions near and far a Functional Urban Area (FUA) of more than 250 thousand inhabitants was { gdp_5_gap } in 2020 and { gdp_3_gap_txt } by { gdp_3_gap_pct} percentage points since 2000.")
}
```
`r next_paragraph`
Meanwhile, in 2020, the gap in GDP per capita between metropolitan and non-metropolitan regions was `r gdp_3_gap`. For reference, the same value for OECD was `r gdp_4_gap`. This gap `r paste(gdp_2_gap_txt, "by", gdp_2_gap_pct)` percentage points since 2000.
`r last_paragraph`
```{r jpn_fig2_3}
# no interactivity
# fig2
# interactivity
ggplotly(fig2) %>%
config(displayModeBar = F)
```
<div class="oecdnote">
**Note**: Far from a FUA>250K includes regions near/with a small FUA and remote regions. OECD mean gap based on 1 586 TL3 regions in 27 countries with available data (no TL3 data for Australia, Canada, Chile, Colombia, Costa Rica, Iceland, Ireland, Israel, Mexico, Luxembourg and Switzerland).<br>
**Source**: OECD Regional Database (2022).
</div>
<br>
<br>
## Recent policy developments
```{r jpn_txt}
read_html_text(ctry)
```
<table border="1" style="width:75%;margin-left:auto;margin-right:auto;">
<tr>
<th style="background:#d4edff; padding:10px;font-size:9.0pt;" valign="center">
Territorial definitions
</th>
</tr>
<tr>
<td>
<p style="padding-left:10px;padding-right:10px;padding-top:10px;font-size:9.0pt;">
The data in this note reflect different sub-national geographic levels in OECD countries. In particular, <b>regions</b> are classified on two territorial levels reflecting the administrative organisation of countries: large regions (TL2) and small regions (TL3).
</p>
<p style="padding-left:10px;padding-right:10px;font-size:9.0pt;">
Small regions are classified according to their access to metropolitan areas (Fadic et al. 2019). The typology classifies small (TL3) regions into metropolitan and non-metropolitan regions according to the following criteria:
</p>
<ul style="list-style-type:circle;font-size:9.0pt;padding-right:10px">
<li>
<b>Metropolitan regions</b>, if more than half of the population live in a FUA. Metropolitan regions are further classified into: <b>metropolitan large</b>, if more than half of the population live in a (large) FUA of at least 1.5 million inhabitants; and <b>metropolitan midsize</b>, if more than half of the population live in a (midsize) FUA of at 250 000 to 1.5 million inhabitants.
</li>
<li>
<b>Non-metropolitan regions</b>, if less than half of the population live in a midsize/large FUA. These regions are further classified according to their level of access to FUAs of different sizes: <b>near a midsize/large FUA</b> if more than half of the population live within a 60-minute drive from a midsize/large FUA (of more than 250 000 inhabitants) or if the TL3 region contains more than 80% of the area of a midsize/large FUA; <b>near a small FUA</b> if the region does not have access to a midsize/large FUA and at least half of its population have access to a small FUA (i.e. between 50 000 and 250 000 inhabitants) within a 60-minute drive, or contains 80% of the area of a small FUA; and <b>remote</b>, otherwise.
</li>
</ul>
</p>
<p style="padding-left:10px;padding-right:10px;font-size:9.0pt;">
Disclaimer: <a href="https://oecdcode.org/disclaimers/territories.html" target="_blank"><i style="color:#0d6efd">https://oecdcode.org/disclaimers/territories.html</i></a>
</p>
</td>
</tr>
</table>