Skip to content

Latest commit

 

History

History
59 lines (46 loc) · 2.65 KB

README.md

File metadata and controls

59 lines (46 loc) · 2.65 KB

Solar-QA-CLI

This repository contains the command-line tool for solar-qa pipepine

Requirement

Requirement for Paper Extraction

Requirement for Generation

All required libraries are detailed in requirement.txt.

pip install -r requirement.txt

Usage

  1. Install GROBID in your computing device
  2. Start running GROBID server in your local device following the instruction from GROBID WEBSITE.
  3. With the running GROBID server, upload the configuration of GROBID in sub-folder .../CLI/setting/config.json. The file is given below:
{
  "grobid_server": "http://localhost:8070",
  "batch_size": 1000,
  "sleep_time": 5,
  "timeout": 60,
  "coordinates": ["persName", "figure", "ref", "biblStruct", "formula", "s"]
}
  1. Run the entire command-line tool by running the cli.py in the directory .../CLI/code/cli.py. The command line to run the cli.py is given below:
{
    "--use_platform": the parameter of whether use online platform or local model for the llm(generation model). option = ["True", "False"]
    "--user_key": the user key or token for the online platform, type="str"
    "--llm_id": the reference id for the llm(generation model), type="str"
    "--hf_key": your huggingface token, this is required to use the similarity model, type="str"
    "--llm_platform": indication of which llm online platform you wish to use, option=["grob"]
    "--sim_model_id": the reference id for the similarity model, type="str"
    "--input_file_path": the directory for the pdf fild that you wish to analysis, type="str", file type=.pdf
    "--prompt_file_path": the directory for the json file that contains your prompt, file type=.json
    "--context_file_path": the directory for where you wish to save the output file, file type=.json
}

Example not use online platform:

python cli.py --use_platform False --hf_key YOUR_HF_KEY --llm_id meta-llama/Llama-3.2-3B-Instruct --sim_model_id Salesforce/SFR-Embedding-Mistral --pdf_file_path .../test.pdf --prompt_file .../prompts.json --context_file_path .../context.json

Example use online platform:

python cli.py --use_platform True --user_key YOUR_USER_KEY --hf_key YOUR_HF_KEY --llm_id llama-3.1-70b-versatile --llm_platform grob --sim_model_id Salesforce/SFR-Embedding-Mistral --pdf_file_path .../test.pdf --prompt_file .../prompts.json --context_file_path .../context.json
  1. Result format is given at Result_Spec.md