Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update default main net to nn-b1a57edbea57.nnue #5056

Closed

Conversation

linrock
Copy link
Contributor

@linrock linrock commented Feb 16, 2024

Created by retraining the previous main net nn-baff1edbea57.nnue with:

  • some of the same options as before: ranger21, more WDL skipping
  • the addition of T80 nov+dec 2023 data
  • increasing loss by 15% when prediction is too high, up from 10%
  • use of torch.compile to speed up training by over 25%
experiment-name: 2560--S9-514G-T80-augtodec2023-more-wdl-skip-15p-more-loss-high-q-sk28

training-dataset:
  # https://github.com/official-stockfish/Stockfish/pull/4782
  - /data/S6-514G-1ee1aba5ed.binpack
  - /data/test80-aug2023-2tb7p.v6.min.binpack
  - /data/test80-sep2023-2tb7p.binpack
  - /data/test80-oct2023-2tb7p.binpack
  - /data/test80-nov2023-2tb7p.binpack
  - /data/test80-dec2023-2tb7p.binpack
early-fen-skipping: 28

start-from-engine-test-net: True
nnue-pytorch-branch: linrock/nnue-pytorch/r21-more-wdl-skip-15p-more-loss-high-q-torch-compile

num-epochs: 1000
lr: 4.375e-4
gamma: 0.995
start-lambda: 1.0
end-lambda: 0.7

Epoch 819 trained with the above config led to this PR. Use of torch.compile decorators in nnue-pytorch model.py was found to speed up training by at least 25% on Ampere gpus when using recent pytorch compiled with cuda 12: https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch

See recent main net PRs for more info on

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Passed STC:
https://tests.stockfishchess.org/tests/view/65cd76151d8e83c78bfd2f52
LLR: 2.98 (-2.94,2.94) <0.00,2.00>
Total: 78336 W: 20504 L: 20115 D: 37717
Ptnml(0-2): 317, 9225, 19721, 9562, 343

Passed LTC:
https://tests.stockfishchess.org/tests/view/65ce5be61d8e83c78bfd43e9
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 41016 W: 10492 L: 10159 D: 20365
Ptnml(0-2): 22, 4533, 11071, 4854, 28

Bench: 1265463

Created by retraining the previous main net `nn-baff1edbea57.nnue` with:
- some of the same options as before: ranger21, more WDL skipping
- the addition of T80 nov+dec 2023 data
- increasing loss by 15% when prediction is too high, up from 10%
- use of torch.compile to speed up training by over 25%

```yaml
experiment-name: 2560--S9-514G-T80-augtodec2023-more-wdl-skip-15p-more-loss-high-q-sk28

training-dataset:
  # official-stockfish#4782
  - /data/S6-514G-1ee1aba5ed.binpack
  - /data/test80-aug2023-2tb7p.v6.min.binpack
  - /data/test80-sep2023-2tb7p.binpack
  - /data/test80-oct2023-2tb7p.binpack
  - /data/test80-nov2023-2tb7p.binpack
  - /data/test80-dec2023-2tb7p.binpack
early-fen-skipping: 28

start-from-engine-test-net: True
nnue-pytorch-branch: linrock/nnue-pytorch/r21-more-wdl-skip-15p-more-loss-high-q-torch-compile

num-epochs: 1000
lr: 4.375e-4
gamma: 0.995
start-lambda: 1.0
end-lambda: 0.7
```

Epoch 819 trained with the above config led to this PR. Use of torch.compile
decorators in nnue-pytorch model.py was found to speed up training by at least
25% on Ampere gpus when using recent pytorch compiled with cuda 12:
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch

See recent main net PRs for more info on
- ranger21 and more WDL skipping: official-stockfish#4942
- increasing loss when Q is too high: official-stockfish#4972

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Passed STC:
https://tests.stockfishchess.org/tests/view/65cd76151d8e83c78bfd2f52
LLR: 2.98 (-2.94,2.94) <0.00,2.00>
Total: 78336 W: 20504 L: 20115 D: 37717
Ptnml(0-2): 317, 9225, 19721, 9562, 343

Passed LTC:
https://tests.stockfishchess.org/tests/view/65ce5be61d8e83c78bfd43e9
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 41016 W: 10492 L: 10159 D: 20365
Ptnml(0-2): 22, 4533, 11071, 4854, 28

Bench: 1265463
@Disservin Disservin added 🚀 gainer Gains elo functional-change to be merged Will be merged shortly labels Feb 16, 2024
@Disservin Disservin closed this in 8e75548 Feb 17, 2024
xu-shawn pushed a commit to xu-shawn/Stockfish that referenced this pull request Feb 17, 2024
Created by retraining the previous main net `nn-baff1edbea57.nnue` with:
- some of the same options as before: ranger21, more WDL skipping
- the addition of T80 nov+dec 2023 data
- increasing loss by 15% when prediction is too high, up from 10%
- use of torch.compile to speed up training by over 25%

```yaml
experiment-name: 2560--S9-514G-T80-augtodec2023-more-wdl-skip-15p-more-loss-high-q-sk28

training-dataset:
  # official-stockfish#4782
  - /data/S6-514G-1ee1aba5ed.binpack
  - /data/test80-aug2023-2tb7p.v6.min.binpack
  - /data/test80-sep2023-2tb7p.binpack
  - /data/test80-oct2023-2tb7p.binpack
  - /data/test80-nov2023-2tb7p.binpack
  - /data/test80-dec2023-2tb7p.binpack
early-fen-skipping: 28

start-from-engine-test-net: True
nnue-pytorch-branch: linrock/nnue-pytorch/r21-more-wdl-skip-15p-more-loss-high-q-torch-compile

num-epochs: 1000
lr: 4.375e-4
gamma: 0.995
start-lambda: 1.0
end-lambda: 0.7
```

Epoch 819 trained with the above config led to this PR. Use of torch.compile
decorators in nnue-pytorch model.py was found to speed up training by at least
25% on Ampere gpus when using recent pytorch compiled with cuda 12:
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch

See recent main net PRs for more info on
- ranger21 and more WDL skipping: official-stockfish#4942
- increasing loss when Q is too high: official-stockfish#4972

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Passed STC:
https://tests.stockfishchess.org/tests/view/65cd76151d8e83c78bfd2f52
LLR: 2.98 (-2.94,2.94) <0.00,2.00>
Total: 78336 W: 20504 L: 20115 D: 37717
Ptnml(0-2): 317, 9225, 19721, 9562, 343

Passed LTC:
https://tests.stockfishchess.org/tests/view/65ce5be61d8e83c78bfd43e9
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 41016 W: 10492 L: 10159 D: 20365
Ptnml(0-2): 22, 4533, 11071, 4854, 28

closes official-stockfish#5056

Bench: 1351997
xu-shawn pushed a commit to xu-shawn/Stockfish that referenced this pull request Feb 19, 2024
Created by retraining the previous main net `nn-baff1edbea57.nnue` with:
- some of the same options as before: ranger21, more WDL skipping
- the addition of T80 nov+dec 2023 data
- increasing loss by 15% when prediction is too high, up from 10%
- use of torch.compile to speed up training by over 25%

```yaml
experiment-name: 2560--S9-514G-T80-augtodec2023-more-wdl-skip-15p-more-loss-high-q-sk28

training-dataset:
  # official-stockfish#4782
  - /data/S6-514G-1ee1aba5ed.binpack
  - /data/test80-aug2023-2tb7p.v6.min.binpack
  - /data/test80-sep2023-2tb7p.binpack
  - /data/test80-oct2023-2tb7p.binpack
  - /data/test80-nov2023-2tb7p.binpack
  - /data/test80-dec2023-2tb7p.binpack
early-fen-skipping: 28

start-from-engine-test-net: True
nnue-pytorch-branch: linrock/nnue-pytorch/r21-more-wdl-skip-15p-more-loss-high-q-torch-compile

num-epochs: 1000
lr: 4.375e-4
gamma: 0.995
start-lambda: 1.0
end-lambda: 0.7
```

Epoch 819 trained with the above config led to this PR. Use of torch.compile
decorators in nnue-pytorch model.py was found to speed up training by at least
25% on Ampere gpus when using recent pytorch compiled with cuda 12:
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch

See recent main net PRs for more info on
- ranger21 and more WDL skipping: official-stockfish#4942
- increasing loss when Q is too high: official-stockfish#4972

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Passed STC:
https://tests.stockfishchess.org/tests/view/65cd76151d8e83c78bfd2f52
LLR: 2.98 (-2.94,2.94) <0.00,2.00>
Total: 78336 W: 20504 L: 20115 D: 37717
Ptnml(0-2): 317, 9225, 19721, 9562, 343

Passed LTC:
https://tests.stockfishchess.org/tests/view/65ce5be61d8e83c78bfd43e9
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 41016 W: 10492 L: 10159 D: 20365
Ptnml(0-2): 22, 4533, 11071, 4854, 28

closes official-stockfish#5056

Bench: 1351997
xu-shawn pushed a commit to xu-shawn/Stockfish that referenced this pull request Feb 19, 2024
Created by retraining the previous main net `nn-baff1edbea57.nnue` with:
- some of the same options as before: ranger21, more WDL skipping
- the addition of T80 nov+dec 2023 data
- increasing loss by 15% when prediction is too high, up from 10%
- use of torch.compile to speed up training by over 25%

```yaml
experiment-name: 2560--S9-514G-T80-augtodec2023-more-wdl-skip-15p-more-loss-high-q-sk28

training-dataset:
  # official-stockfish#4782
  - /data/S6-514G-1ee1aba5ed.binpack
  - /data/test80-aug2023-2tb7p.v6.min.binpack
  - /data/test80-sep2023-2tb7p.binpack
  - /data/test80-oct2023-2tb7p.binpack
  - /data/test80-nov2023-2tb7p.binpack
  - /data/test80-dec2023-2tb7p.binpack
early-fen-skipping: 28

start-from-engine-test-net: True
nnue-pytorch-branch: linrock/nnue-pytorch/r21-more-wdl-skip-15p-more-loss-high-q-torch-compile

num-epochs: 1000
lr: 4.375e-4
gamma: 0.995
start-lambda: 1.0
end-lambda: 0.7
```

Epoch 819 trained with the above config led to this PR. Use of torch.compile
decorators in nnue-pytorch model.py was found to speed up training by at least
25% on Ampere gpus when using recent pytorch compiled with cuda 12:
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch

See recent main net PRs for more info on
- ranger21 and more WDL skipping: official-stockfish#4942
- increasing loss when Q is too high: official-stockfish#4972

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Passed STC:
https://tests.stockfishchess.org/tests/view/65cd76151d8e83c78bfd2f52
LLR: 2.98 (-2.94,2.94) <0.00,2.00>
Total: 78336 W: 20504 L: 20115 D: 37717
Ptnml(0-2): 317, 9225, 19721, 9562, 343

Passed LTC:
https://tests.stockfishchess.org/tests/view/65ce5be61d8e83c78bfd43e9
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 41016 W: 10492 L: 10159 D: 20365
Ptnml(0-2): 22, 4533, 11071, 4854, 28

closes official-stockfish#5056

Bench: 1351997
xu-shawn pushed a commit to xu-shawn/Stockfish that referenced this pull request Feb 19, 2024
Created by retraining the previous main net `nn-baff1edbea57.nnue` with:
- some of the same options as before: ranger21, more WDL skipping
- the addition of T80 nov+dec 2023 data
- increasing loss by 15% when prediction is too high, up from 10%
- use of torch.compile to speed up training by over 25%

```yaml
experiment-name: 2560--S9-514G-T80-augtodec2023-more-wdl-skip-15p-more-loss-high-q-sk28

training-dataset:
  # official-stockfish#4782
  - /data/S6-514G-1ee1aba5ed.binpack
  - /data/test80-aug2023-2tb7p.v6.min.binpack
  - /data/test80-sep2023-2tb7p.binpack
  - /data/test80-oct2023-2tb7p.binpack
  - /data/test80-nov2023-2tb7p.binpack
  - /data/test80-dec2023-2tb7p.binpack
early-fen-skipping: 28

start-from-engine-test-net: True
nnue-pytorch-branch: linrock/nnue-pytorch/r21-more-wdl-skip-15p-more-loss-high-q-torch-compile

num-epochs: 1000
lr: 4.375e-4
gamma: 0.995
start-lambda: 1.0
end-lambda: 0.7
```

Epoch 819 trained with the above config led to this PR. Use of torch.compile
decorators in nnue-pytorch model.py was found to speed up training by at least
25% on Ampere gpus when using recent pytorch compiled with cuda 12:
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch

See recent main net PRs for more info on
- ranger21 and more WDL skipping: official-stockfish#4942
- increasing loss when Q is too high: official-stockfish#4972

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Passed STC:
https://tests.stockfishchess.org/tests/view/65cd76151d8e83c78bfd2f52
LLR: 2.98 (-2.94,2.94) <0.00,2.00>
Total: 78336 W: 20504 L: 20115 D: 37717
Ptnml(0-2): 317, 9225, 19721, 9562, 343

Passed LTC:
https://tests.stockfishchess.org/tests/view/65ce5be61d8e83c78bfd43e9
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 41016 W: 10492 L: 10159 D: 20365
Ptnml(0-2): 22, 4533, 11071, 4854, 28

closes official-stockfish#5056

Bench: 1351997
TierynnB pushed a commit to TierynnB/Stockfish that referenced this pull request Feb 22, 2024
Created by retraining the previous main net `nn-baff1edbea57.nnue` with:
- some of the same options as before: ranger21, more WDL skipping
- the addition of T80 nov+dec 2023 data
- increasing loss by 15% when prediction is too high, up from 10%
- use of torch.compile to speed up training by over 25%

```yaml
experiment-name: 2560--S9-514G-T80-augtodec2023-more-wdl-skip-15p-more-loss-high-q-sk28

training-dataset:
  # official-stockfish#4782
  - /data/S6-514G-1ee1aba5ed.binpack
  - /data/test80-aug2023-2tb7p.v6.min.binpack
  - /data/test80-sep2023-2tb7p.binpack
  - /data/test80-oct2023-2tb7p.binpack
  - /data/test80-nov2023-2tb7p.binpack
  - /data/test80-dec2023-2tb7p.binpack
early-fen-skipping: 28

start-from-engine-test-net: True
nnue-pytorch-branch: linrock/nnue-pytorch/r21-more-wdl-skip-15p-more-loss-high-q-torch-compile

num-epochs: 1000
lr: 4.375e-4
gamma: 0.995
start-lambda: 1.0
end-lambda: 0.7
```

Epoch 819 trained with the above config led to this PR. Use of torch.compile
decorators in nnue-pytorch model.py was found to speed up training by at least
25% on Ampere gpus when using recent pytorch compiled with cuda 12:
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch

See recent main net PRs for more info on
- ranger21 and more WDL skipping: official-stockfish#4942
- increasing loss when Q is too high: official-stockfish#4972

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Passed STC:
https://tests.stockfishchess.org/tests/view/65cd76151d8e83c78bfd2f52
LLR: 2.98 (-2.94,2.94) <0.00,2.00>
Total: 78336 W: 20504 L: 20115 D: 37717
Ptnml(0-2): 317, 9225, 19721, 9562, 343

Passed LTC:
https://tests.stockfishchess.org/tests/view/65ce5be61d8e83c78bfd43e9
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 41016 W: 10492 L: 10159 D: 20365
Ptnml(0-2): 22, 4533, 11071, 4854, 28

closes official-stockfish#5056

Bench: 1351997
TierynnB added a commit to TierynnB/Stockfish that referenced this pull request Feb 23, 2024
commit 524083a
Merge: 8a0206f 4a5ba40
Author: Tierynn Byrnes <t.byrnes47@gmail.com>
Date:   Fri Feb 23 08:42:30 2024 +1000

    Merge branch 'TM_Change_2' of https://github.com/TierynnB/Stockfish into TM_Change_2

commit 8a0206f
Author: Tierynn Byrnes <t.byrnes47@gmail.com>
Date:   Mon Feb 19 07:13:26 2024 +1000

    use current time instead of '1' for timeLeft formula.

    make timeLeft a double, timepoint seemed unecessary since it was always casting back to double anyway.

    fixed comments

    Squashed commits

commit 4a5ba40
Merge: ce952bf 676a1d7
Author: Tierynn Byrnes <t.byrnes47@gmail.com>
Date:   Fri Feb 23 08:01:21 2024 +1000

    Merge branch 'TM_Change_2' of https://github.com/TierynnB/Stockfish into TM_Change_2

commit ce952bf
Author: cj5716 <125858804+cj5716@users.noreply.github.com>
Date:   Tue Feb 13 17:46:37 2024 +0800

    Simplify PV node reduction

    Reduce less on PV nodes even with an upperbound TT entry.

    Passed STC:
    https://tests.stockfishchess.org/tests/view/65cb3a861d8e83c78bfd0497
    LLR: 2.96 (-2.94,2.94) <-1.75,0.25>
    Total: 118752 W: 30441 L: 30307 D: 58004
    Ptnml(0-2): 476, 14179, 29921, 14335, 465

    Passed LTC:
    https://tests.stockfishchess.org/tests/view/65cd3b951d8e83c78bfd2b0d
    LLR: 2.95 (-2.94,2.94) <-1.75,0.25>
    Total: 155058 W: 38549 L: 38464 D: 78045
    Ptnml(0-2): 85, 17521, 42219, 17632, 72

    closes official-stockfish#5057

    Bench: 1303971

commit 4acf810
Author: Linmiao Xu <linmiao.xu@gmail.com>
Date:   Tue Feb 6 11:21:15 2024 -0500

    Update default main net to nn-b1a57edbea57.nnue

    Created by retraining the previous main net `nn-baff1edbea57.nnue` with:
    - some of the same options as before: ranger21, more WDL skipping
    - the addition of T80 nov+dec 2023 data
    - increasing loss by 15% when prediction is too high, up from 10%
    - use of torch.compile to speed up training by over 25%

    ```yaml
    experiment-name: 2560--S9-514G-T80-augtodec2023-more-wdl-skip-15p-more-loss-high-q-sk28

    training-dataset:
      # official-stockfish#4782
      - /data/S6-514G-1ee1aba5ed.binpack
      - /data/test80-aug2023-2tb7p.v6.min.binpack
      - /data/test80-sep2023-2tb7p.binpack
      - /data/test80-oct2023-2tb7p.binpack
      - /data/test80-nov2023-2tb7p.binpack
      - /data/test80-dec2023-2tb7p.binpack
    early-fen-skipping: 28

    start-from-engine-test-net: True
    nnue-pytorch-branch: linrock/nnue-pytorch/r21-more-wdl-skip-15p-more-loss-high-q-torch-compile

    num-epochs: 1000
    lr: 4.375e-4
    gamma: 0.995
    start-lambda: 1.0
    end-lambda: 0.7
    ```

    Epoch 819 trained with the above config led to this PR. Use of torch.compile
    decorators in nnue-pytorch model.py was found to speed up training by at least
    25% on Ampere gpus when using recent pytorch compiled with cuda 12:
    https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch

    See recent main net PRs for more info on
    - ranger21 and more WDL skipping: official-stockfish#4942
    - increasing loss when Q is too high: official-stockfish#4972

    Training data can be found at:
    https://robotmoon.com/nnue-training-data/

    Passed STC:
    https://tests.stockfishchess.org/tests/view/65cd76151d8e83c78bfd2f52
    LLR: 2.98 (-2.94,2.94) <0.00,2.00>
    Total: 78336 W: 20504 L: 20115 D: 37717
    Ptnml(0-2): 317, 9225, 19721, 9562, 343

    Passed LTC:
    https://tests.stockfishchess.org/tests/view/65ce5be61d8e83c78bfd43e9
    LLR: 2.95 (-2.94,2.94) <0.50,2.50>
    Total: 41016 W: 10492 L: 10159 D: 20365
    Ptnml(0-2): 22, 4533, 11071, 4854, 28

    closes official-stockfish#5056

    Bench: 1351997

commit 40c6cdf
Author: cj5716 <125858804+cj5716@users.noreply.github.com>
Date:   Tue Feb 13 17:50:16 2024 +0800

    Simplify TT PV reduction

    This also removes some incorrect fail-high logic.

    Passed STC:
    https://tests.stockfishchess.org/tests/view/65cb3b641d8e83c78bfd04a9
    LLR: 2.94 (-2.94,2.94) <-1.75,0.25>
    Total: 87968 W: 22634 L: 22468 D: 42866
    Ptnml(0-2): 315, 10436, 22323, 10588, 322

    Passed LTC:
    https://tests.stockfishchess.org/tests/view/65cccee21d8e83c78bfd222c
    LLR: 2.95 (-2.94,2.94) <-1.75,0.25>
    Total: 70794 W: 17846 L: 17672 D: 35276
    Ptnml(0-2): 44, 7980, 19189, 8126, 58

    closes official-stockfish#5055

    Bench: 1474424

commit 9299d01
Author: Gahtan Nahdi <155860115+gahtan-syarif@users.noreply.github.com>
Date:   Sat Feb 10 03:51:05 2024 +0700

    Remove penalty for quiet ttMove that fails low

    Passed STC non-reg:
    https://tests.stockfishchess.org/tests/view/65c691a7c865510db0286e6e
    LLR: 2.95 (-2.94,2.94) <-1.75,0.25>
    Total: 234336 W: 60258 L: 60255 D: 113823
    Ptnml(0-2): 966, 28141, 58918, 28210, 933

    Passed LTC non-reg:
    https://tests.stockfishchess.org/tests/view/65c8d0d31d8e83c78bfcd4a6
    LLR: 2.95 (-2.94,2.94) <-1.75,0.25>
    Total: 235206 W: 59134 L: 59132 D: 116940
    Ptnml(0-2): 135, 26908, 63517, 26906, 137

    official-stockfish#5054

    Bench: 1287996

commit 676a1d7
Merge: 7d0cd7b 3c3f88b
Author: Tierynn Byrnes <t.byrnes47@gmail.com>
Date:   Fri Feb 23 07:58:38 2024 +1000

    Merge branch 'TM_Change_2' of https://github.com/TierynnB/Stockfish into TM_Change_2

commit 7d0cd7b
Author: Tierynn Byrnes <t.byrnes47@gmail.com>
Date:   Mon Feb 19 07:13:26 2024 +1000

    parent 8b67b7e
    author Tierynn Byrnes <t.byrnes47@gmail.com> 1708290806 +1000
    committer Tierynn Byrnes <t.byrnes47@gmail.com> 1708638981 +1000

    use current time instead of '1' for timeLeft
    formula.

    make timeLeft a double, timepoint seemed
    unecessary since it was always casting back to double anyway.

commit 3c3f88b
Merge: 76c50a0 61e8083
Author: Tierynn Byrnes <t.byrnes47@gmail.com>
Date:   Fri Feb 23 07:54:46 2024 +1000

    Merge branch 'TM_Change_2' of https://github.com/TierynnB/Stockfish into TM_Change_2

commit 76c50a0
Author: Tierynn Byrnes <t.byrnes47@gmail.com>
Date:   Mon Feb 19 07:13:26 2024 +1000

    use current time instead of '1' for timeLeft
    formula.

    make timeLeft a double, timepoint seemed
    unecessary since it was always casting back to double anyway.

    fixed comments

commit 61e8083
Merge: 5cf3f49 8afec41
Author: Tierynn Byrnes <t.byrnes47@gmail.com>
Date:   Thu Feb 22 19:44:21 2024 +1000

    Merge branch 'TM_Change_2' of https://github.com/TierynnB/Stockfish into TM_Change_2

commit 5cf3f49
Author: Tierynn Byrnes <t.byrnes47@gmail.com>
Date:   Mon Feb 19 07:13:26 2024 +1000

    use current time instead of '1' for timeLeft
    formula.

    make timeLeft a double, timepoint seemed
    unecessary since it was always casting back to double anyway.

commit 8afec41
Author: Tierynn Byrnes <t.byrnes47@gmail.com>
Date:   Mon Feb 19 07:50:30 2024 +1000

    fixed comments

commit de4a3c4
Author: Tierynn Byrnes <t.byrnes47@gmail.com>
Date:   Mon Feb 19 07:32:09 2024 +1000

    make timeLeft a double, timepoint seemed unecessary since it was always casting back to double anyway.

commit e1f6b87
Merge: 8b67b7e fc41f64
Author: Lemmy <10430540+TierynnB@users.noreply.github.com>
Date:   Mon Feb 19 07:14:27 2024 +1000

    Merge branch 'official-stockfish:master' into TM_Change_2

commit 8b67b7e
Author: Tierynn Byrnes <t.byrnes47@gmail.com>
Date:   Mon Feb 19 07:13:26 2024 +1000

    use current time instead of '1' for timeLeft formula.
linrock added a commit to linrock/Stockfish that referenced this pull request Mar 5, 2024
Created by retraining the previous main net `nn-b1a57edbea57.nnue` with:
- some of the same options as before:
  - ranger21, more WDL skipping, 15% more loss when Q is too high
- removal of the huge 514G pre-interleaved binpack
- removal of SF-generated dfrc data (dfrc99-16tb7p-filt-v2.min.binpack)
- interleaving many binpacks at training time
- training with some bestmove capture positions where SEE < 0
- increased usage of torch.compile to speed up training by up to 40%

```yaml
experiment-name: 2560--S10-dfrc0-to-dec2023-skip-more-wdl-15p-more-loss-high-q-see-ge0-sk28
nnue-pytorch-branch: linrock/nnue-pytorch/r21-more-wdl-skip-15p-more-loss-high-q-skip-see-ge0-torch-compile-more
start-from-engine-test-net: True

early-fen-skipping: 28
training-dataset:
  # similar, not the exact same as:
  # official-stockfish#4635
  - /data/S5-5af/leela96.v2.min.binpack
  - /data/S5-5af/test60-2021-11-12-novdec-12tb7p.v6-dd.min.binpack
  - /data/S5-5af/test77-2021-12-dec-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test78-2022-01-to-05-jantomay-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test78-2022-06-to-09-juntosep-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test79-2022-04-apr-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test79-2022-05-may-16tb7p.v6-dd.min.binpack

  - /data/S5-5af/test80-2022-06-jun-16tb7p.v6-dd.min.unmin.binpack
  - /data/S5-5af/test80-2022-07-jul-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test80-2022-08-aug-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test80-2022-09-sep-16tb7p.v6-dd.min.unmin.binpack
  - /data/S5-5af/test80-2022-10-oct-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test80-2022-11-nov-16tb7p.v6-dd.min.binpack

  - /data/S5-5af/test80-2023-01-jan-16tb7p.v6-sk20.min.binpack
  - /data/S5-5af/test80-2023-02-feb-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test80-2023-03-mar-2tb7p.min.unmin.binpack
  - /data/S5-5af/test80-2023-04-apr-2tb7p.binpack
  - /data/S5-5af/test80-2023-05-may-2tb7p.min.dd.binpack

  # official-stockfish#4782
  - /data/S6-1ee1aba5ed/test80-2023-06-jun-2tb7p.binpack
  - /data/S6-1ee1aba5ed/test80-2023-07-jul-2tb7p.min.binpack

  # official-stockfish#4972
  - /data/S8-baff1edbea57/test80-2023-08-aug-2tb7p.v6.min.binpack
  - /data/S8-baff1edbea57/test80-2023-09-sep-2tb7p.binpack
  - /data/S8-baff1edbea57/test80-2023-10-oct-2tb7p.binpack

  # official-stockfish#5056
  - /data/S9-b1a57edbea57/test80-2023-11-nov-2tb7p.binpack
  - /data/S9-b1a57edbea57/test80-2023-12-dec-2tb7p.binpack

num-epochs: 800
lr: 4.375e-4
gamma: 0.995
start-lambda: 1.0
end-lambda: 0.7
```

This particular net was reached at epoch 759. Use of more torch.compile decorators
in nnue-pytorch model.py than in the previous main net training run sped up training
by up to 40% on Tesla gpus when using recent pytorch compiled with cuda 12:
https://github.com/linrock/nnue-tools/blob/7fb9831/Dockerfile

Skipping positions with bestmove captures where static exchange evaluation is >= 0
is based on the implementation from Sopel's NNUE training & experimentation log:
https://docs.google.com/document/d/1gTlrr02qSNKiXNZ_SuO4-RjK4MXBiFlLE6jvNqqMkAY
Experiment 293 - only skip captures with see>=0

Positions with bestmove captures where score == 0 are always skipped for
compatibility with minimized binpacks, since the original minimizer sets
scores to 0 for slight improvements in compression.

The trainer branch used was:
https://github.com/linrock/nnue-pytorch/tree/r21-more-wdl-skip-15p-more-loss-high-q-skip-see-ge0-torch-compile-more

Binpacks were renamed to be sorted chronologically by default when sorted by name.
The binpack data are otherwise the same as binpacks with similar names in the prior
naming convention.

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Passed STC:
https://tests.stockfishchess.org/tests/view/65e3ddd1f2ef6c733362ae5c
LLR: 2.92 (-2.94,2.94) <0.00,2.00>
Total: 149792 W: 39153 L: 38661 D: 71978
Ptnml(0-2): 675, 17586, 37905, 18032, 698

Passed LTC:
https://tests.stockfishchess.org/tests/view/65e4d91c416ecd92c162a69b
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 64416 W: 16517 L: 16135 D: 31764
Ptnml(0-2): 38, 7218, 17313, 7602, 37

Bench: 1536373
linrock added a commit to linrock/Stockfish that referenced this pull request Mar 5, 2024
Created by retraining the previous main net `nn-b1a57edbea57.nnue` with:
- some of the same options as before:
  - ranger21, more WDL skipping, 15% more loss when Q is too high
- removal of the huge 514G pre-interleaved binpack
- removal of SF-generated dfrc data (dfrc99-16tb7p-filt-v2.min.binpack)
- interleaving many binpacks at training time
- training with some bestmove capture positions where SEE < 0
- increased usage of torch.compile to speed up training by up to 40%

```yaml
experiment-name: 2560--S10-dfrc0-to-dec2023-skip-more-wdl-15p-more-loss-high-q-see-ge0-sk28
nnue-pytorch-branch: linrock/nnue-pytorch/r21-more-wdl-skip-15p-more-loss-high-q-skip-see-ge0-torch-compile-more
start-from-engine-test-net: True

early-fen-skipping: 28
training-dataset:
  # similar, not the exact same as:
  # official-stockfish#4635
  - /data/S5-5af/leela96.v2.min.binpack
  - /data/S5-5af/test60-2021-11-12-novdec-12tb7p.v6-dd.min.binpack
  - /data/S5-5af/test77-2021-12-dec-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test78-2022-01-to-05-jantomay-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test78-2022-06-to-09-juntosep-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test79-2022-04-apr-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test79-2022-05-may-16tb7p.v6-dd.min.binpack

  - /data/S5-5af/test80-2022-06-jun-16tb7p.v6-dd.min.unmin.binpack
  - /data/S5-5af/test80-2022-07-jul-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test80-2022-08-aug-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test80-2022-09-sep-16tb7p.v6-dd.min.unmin.binpack
  - /data/S5-5af/test80-2022-10-oct-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test80-2022-11-nov-16tb7p.v6-dd.min.binpack

  - /data/S5-5af/test80-2023-01-jan-16tb7p.v6-sk20.min.binpack
  - /data/S5-5af/test80-2023-02-feb-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test80-2023-03-mar-2tb7p.min.unmin.binpack
  - /data/S5-5af/test80-2023-04-apr-2tb7p.binpack
  - /data/S5-5af/test80-2023-05-may-2tb7p.min.dd.binpack

  # official-stockfish#4782
  - /data/S6-1ee1aba5ed/test80-2023-06-jun-2tb7p.binpack
  - /data/S6-1ee1aba5ed/test80-2023-07-jul-2tb7p.min.binpack

  # official-stockfish#4972
  - /data/S8-baff1edbea57/test80-2023-08-aug-2tb7p.v6.min.binpack
  - /data/S8-baff1edbea57/test80-2023-09-sep-2tb7p.binpack
  - /data/S8-baff1edbea57/test80-2023-10-oct-2tb7p.binpack

  # official-stockfish#5056
  - /data/S9-b1a57edbea57/test80-2023-11-nov-2tb7p.binpack
  - /data/S9-b1a57edbea57/test80-2023-12-dec-2tb7p.binpack

num-epochs: 800
lr: 4.375e-4
gamma: 0.995
start-lambda: 1.0
end-lambda: 0.7
```

This particular net was reached at epoch 759. Use of more torch.compile decorators
in nnue-pytorch model.py than in the previous main net training run sped up training
by up to 40% on Tesla gpus when using recent pytorch compiled with cuda 12:
https://github.com/linrock/nnue-tools/blob/7fb9831/Dockerfile

Skipping positions with bestmove captures where static exchange evaluation is >= 0
is based on the implementation from Sopel's NNUE training & experimentation log:
https://docs.google.com/document/d/1gTlrr02qSNKiXNZ_SuO4-RjK4MXBiFlLE6jvNqqMkAY
Experiment 293 - only skip captures with see>=0

Positions with bestmove captures where score == 0 are always skipped for
compatibility with minimized binpacks, since the original minimizer sets
scores to 0 for slight improvements in compression.

The trainer branch used was:
https://github.com/linrock/nnue-pytorch/tree/r21-more-wdl-skip-15p-more-loss-high-q-skip-see-ge0-torch-compile-more

Binpacks were renamed to be sorted chronologically by default when sorted by name.
The binpack data are otherwise the same as binpacks with similar names in the prior
naming convention.

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Passed STC:
https://tests.stockfishchess.org/tests/view/65e3ddd1f2ef6c733362ae5c
LLR: 2.92 (-2.94,2.94) <0.00,2.00>
Total: 149792 W: 39153 L: 38661 D: 71978
Ptnml(0-2): 675, 17586, 37905, 18032, 698

Passed LTC:
https://tests.stockfishchess.org/tests/view/65e4d91c416ecd92c162a69b
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 64416 W: 16517 L: 16135 D: 31764
Ptnml(0-2): 38, 7218, 17313, 7602, 37

Bench: 1373183
Disservin pushed a commit that referenced this pull request Mar 7, 2024
Created by retraining the previous main net `nn-b1a57edbea57.nnue` with:
- some of the same options as before:
  - ranger21, more WDL skipping, 15% more loss when Q is too high
- removal of the huge 514G pre-interleaved binpack
- removal of SF-generated dfrc data (dfrc99-16tb7p-filt-v2.min.binpack)
- interleaving many binpacks at training time
- training with some bestmove capture positions where SEE < 0
- increased usage of torch.compile to speed up training by up to 40%

```yaml
experiment-name: 2560--S10-dfrc0-to-dec2023-skip-more-wdl-15p-more-loss-high-q-see-ge0-sk28
nnue-pytorch-branch: linrock/nnue-pytorch/r21-more-wdl-skip-15p-more-loss-high-q-skip-see-ge0-torch-compile-more
start-from-engine-test-net: True

early-fen-skipping: 28
training-dataset:
  # similar, not the exact same as:
  # #4635
  - /data/S5-5af/leela96.v2.min.binpack
  - /data/S5-5af/test60-2021-11-12-novdec-12tb7p.v6-dd.min.binpack
  - /data/S5-5af/test77-2021-12-dec-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test78-2022-01-to-05-jantomay-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test78-2022-06-to-09-juntosep-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test79-2022-04-apr-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test79-2022-05-may-16tb7p.v6-dd.min.binpack

  - /data/S5-5af/test80-2022-06-jun-16tb7p.v6-dd.min.unmin.binpack
  - /data/S5-5af/test80-2022-07-jul-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test80-2022-08-aug-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test80-2022-09-sep-16tb7p.v6-dd.min.unmin.binpack
  - /data/S5-5af/test80-2022-10-oct-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test80-2022-11-nov-16tb7p.v6-dd.min.binpack

  - /data/S5-5af/test80-2023-01-jan-16tb7p.v6-sk20.min.binpack
  - /data/S5-5af/test80-2023-02-feb-16tb7p.v6-dd.min.binpack
  - /data/S5-5af/test80-2023-03-mar-2tb7p.min.unmin.binpack
  - /data/S5-5af/test80-2023-04-apr-2tb7p.binpack
  - /data/S5-5af/test80-2023-05-may-2tb7p.min.dd.binpack

  # #4782
  - /data/S6-1ee1aba5ed/test80-2023-06-jun-2tb7p.binpack
  - /data/S6-1ee1aba5ed/test80-2023-07-jul-2tb7p.min.binpack

  # #4972
  - /data/S8-baff1edbea57/test80-2023-08-aug-2tb7p.v6.min.binpack
  - /data/S8-baff1edbea57/test80-2023-09-sep-2tb7p.binpack
  - /data/S8-baff1edbea57/test80-2023-10-oct-2tb7p.binpack

  # #5056
  - /data/S9-b1a57edbea57/test80-2023-11-nov-2tb7p.binpack
  - /data/S9-b1a57edbea57/test80-2023-12-dec-2tb7p.binpack

num-epochs: 800
lr: 4.375e-4
gamma: 0.995
start-lambda: 1.0
end-lambda: 0.7
```

This particular net was reached at epoch 759. Use of more torch.compile decorators
in nnue-pytorch model.py than in the previous main net training run sped up training
by up to 40% on Tesla gpus when using recent pytorch compiled with cuda 12:
https://github.com/linrock/nnue-tools/blob/7fb9831/Dockerfile

Skipping positions with bestmove captures where static exchange evaluation is >= 0
is based on the implementation from Sopel's NNUE training & experimentation log:
https://docs.google.com/document/d/1gTlrr02qSNKiXNZ_SuO4-RjK4MXBiFlLE6jvNqqMkAY
Experiment 293 - only skip captures with see>=0

Positions with bestmove captures where score == 0 are always skipped for
compatibility with minimized binpacks, since the original minimizer sets
scores to 0 for slight improvements in compression.

The trainer branch used was:
https://github.com/linrock/nnue-pytorch/tree/r21-more-wdl-skip-15p-more-loss-high-q-skip-see-ge0-torch-compile-more

Binpacks were renamed to be sorted chronologically by default when sorted by name.
The binpack data are otherwise the same as binpacks with similar names in the prior
naming convention.

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Passed STC:
https://tests.stockfishchess.org/tests/view/65e3ddd1f2ef6c733362ae5c
LLR: 2.92 (-2.94,2.94) <0.00,2.00>
Total: 149792 W: 39153 L: 38661 D: 71978
Ptnml(0-2): 675, 17586, 37905, 18032, 698

Passed LTC:
https://tests.stockfishchess.org/tests/view/65e4d91c416ecd92c162a69b
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 64416 W: 16517 L: 16135 D: 31764
Ptnml(0-2): 38, 7218, 17313, 7602, 37

closes #5090

Bench: 1373183
linrock added a commit to linrock/Stockfish that referenced this pull request May 17, 2024
Created by first retraining the spsa-tuned master net `nn-ae6a388e4a1a.nnue` with:
- using v6-dd data without bestmove captures removed
- addition of T80 mar2024 data
- increasing loss by 20% when Q is too high
- torch.compile changes for marginal training speed gains

And then SPSA tuning weights of epoch 899 following methods described in:
official-stockfish#5149

This net was reached at 92k out of 120k steps in this 70+0.7 th 7 SPSA tuning run:
https://tests.stockfishchess.org/tests/view/66413b7df9f4e8fc783c9bbb
Thanks to @Viren6 for suggesting usage of:
- c value 4 for the weights
- c value 128 for the biases

Scripts for automating applying fishtest spsa params to exporting tuned .nnue are in:
https://github.com/linrock/nnue-tools/tree/master/spsa

Before spsa tuning, epoch 899 was nn-f85738aefa84.nnue
https://tests.stockfishchess.org/tests/view/663e5c893a2f9702074bc167

After initially training with max-epoch 800, training was resumed with max-epoch 1000.

```
experiment-name: 3072--S11--more-data-v6-dd-t80-mar2024--see-ge0-20p-more-loss-high-q-sk28-l8
nnue-pytorch-branch: linrock/nnue-pytorch/3072-r21-skip-more-wdl-see-ge0-20p-more-loss-high-q-torch-compile-more

start-from-engine-test-net: False
start-from-model: /data/config/apr2024-3072/nn-ae6a388e4a1a.nnue

early-fen-skipping: 28
training-dataset:
  /data/S11-mar2024/:
    - leela96.v2.min.binpack

    - test60-2021-11-12-novdec-12tb7p.v6-dd.min.binpack
    - test78-2022-01-to-05-jantomay-16tb7p.v6-dd.min.binpack

    - test80-2022-06-jun-16tb7p.v6-dd.min.binpack

    - test80-2022-08-aug-16tb7p.v6-dd.min.binpack
    - test80-2022-09-sep-16tb7p.v6-dd.min.binpack

    - test80-2023-01-jan-16tb7p.v6-sk20.min.binpack
    - test80-2023-02-feb-16tb7p.v6-sk20.min.binpack
    - test80-2023-03-mar-2tb7p.v6-sk16.min.binpack
    - test80-2023-04-apr-2tb7p.v6-sk16.min.binpack
    - test80-2023-05-may-2tb7p.v6.min.binpack

    # official-stockfish#4782
    - test80-2023-06-jun-2tb7p.binpack
    - test80-2023-07-jul-2tb7p.binpack

    # official-stockfish#4972
    - test80-2023-08-aug-2tb7p.v6.min.binpack
    - test80-2023-09-sep-2tb7p.binpack
    - test80-2023-10-oct-2tb7p.binpack

    # S9 new data: official-stockfish#5056
    - test80-2023-11-nov-2tb7p.binpack
    - test80-2023-12-dec-2tb7p.binpack

    # S10 new data: official-stockfish#5149
    - test80-2024-01-jan-2tb7p.binpack
    - test80-2024-02-feb-2tb7p.binpack

    # S11 new data
    - test80-2024-03-mar-2tb7p.binpack

  /data/filt-v6-dd/:
    - test77-dec2021-16tb7p-filter-v6-dd.binpack
    - test78-juntosep2022-16tb7p-filter-v6-dd.binpack
    - test79-apr2022-16tb7p-filter-v6-dd.binpack
    - test79-may2022-16tb7p-filter-v6-dd.binpack
    - test80-jul2022-16tb7p-filter-v6-dd.binpack
    - test80-oct2022-16tb7p-filter-v6-dd.binpack
    - test80-nov2022-16tb7p-filter-v6-dd.binpack

num-epochs: 1000

lr: 4.375e-4
gamma: 0.995
start-lambda: 0.8
end-lambda: 0.7
```

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move:
nn-epoch899.nnue : 4.6 +/- 1.4

Passed STC:
https://tests.stockfishchess.org/tests/view/6645454893ce6da3e93b31ae
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
Total: 95232 W: 24598 L: 24194 D: 46440
Ptnml(0-2): 294, 11215, 24180, 11647, 280

Passed LTC:
https://tests.stockfishchess.org/tests/view/6645522d93ce6da3e93b31df
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 320544 W: 81432 L: 80524 D: 158588
Ptnml(0-2): 164, 35659, 87696, 36611, 142

bench 1955748
linrock added a commit to linrock/Stockfish that referenced this pull request May 17, 2024
Created by first retraining the spsa-tuned main net `nn-ae6a388e4a1a.nnue` with:
- using v6-dd data without bestmove captures removed
- addition of T80 mar2024 data
- increasing loss by 20% when Q is too high
- torch.compile changes for marginal training speed gains

And then SPSA tuning weights of epoch 899 following methods described in:
official-stockfish#5149

This net was reached at 92k out of 120k steps in this 70+0.7 th 7 SPSA tuning run:
https://tests.stockfishchess.org/tests/view/66413b7df9f4e8fc783c9bbb
Thanks to @Viren6 for suggesting usage of:
- c value 4 for the weights
- c value 128 for the biases

Scripts for automating applying fishtest spsa params to exporting tuned .nnue are in:
https://github.com/linrock/nnue-tools/tree/master/spsa

Before spsa tuning, epoch 899 was nn-f85738aefa84.nnue
https://tests.stockfishchess.org/tests/view/663e5c893a2f9702074bc167

After initially training with max-epoch 800, training was resumed with max-epoch 1000.

```
experiment-name: 3072--S11--more-data-v6-dd-t80-mar2024--see-ge0-20p-more-loss-high-q-sk28-l8
nnue-pytorch-branch: linrock/nnue-pytorch/3072-r21-skip-more-wdl-see-ge0-20p-more-loss-high-q-torch-compile-more

start-from-engine-test-net: False
start-from-model: /data/config/apr2024-3072/nn-ae6a388e4a1a.nnue

early-fen-skipping: 28
training-dataset:
  /data/S11-mar2024/:
    - leela96.v2.min.binpack

    - test60-2021-11-12-novdec-12tb7p.v6-dd.min.binpack
    - test78-2022-01-to-05-jantomay-16tb7p.v6-dd.min.binpack

    - test80-2022-06-jun-16tb7p.v6-dd.min.binpack

    - test80-2022-08-aug-16tb7p.v6-dd.min.binpack
    - test80-2022-09-sep-16tb7p.v6-dd.min.binpack

    - test80-2023-01-jan-16tb7p.v6-sk20.min.binpack
    - test80-2023-02-feb-16tb7p.v6-sk20.min.binpack
    - test80-2023-03-mar-2tb7p.v6-sk16.min.binpack
    - test80-2023-04-apr-2tb7p.v6-sk16.min.binpack
    - test80-2023-05-may-2tb7p.v6.min.binpack

    # official-stockfish#4782
    - test80-2023-06-jun-2tb7p.binpack
    - test80-2023-07-jul-2tb7p.binpack

    # official-stockfish#4972
    - test80-2023-08-aug-2tb7p.v6.min.binpack
    - test80-2023-09-sep-2tb7p.binpack
    - test80-2023-10-oct-2tb7p.binpack

    # S9 new data: official-stockfish#5056
    - test80-2023-11-nov-2tb7p.binpack
    - test80-2023-12-dec-2tb7p.binpack

    # S10 new data: official-stockfish#5149
    - test80-2024-01-jan-2tb7p.binpack
    - test80-2024-02-feb-2tb7p.binpack

    # S11 new data
    - test80-2024-03-mar-2tb7p.binpack

  /data/filt-v6-dd/:
    - test77-dec2021-16tb7p-filter-v6-dd.binpack
    - test78-juntosep2022-16tb7p-filter-v6-dd.binpack
    - test79-apr2022-16tb7p-filter-v6-dd.binpack
    - test79-may2022-16tb7p-filter-v6-dd.binpack
    - test80-jul2022-16tb7p-filter-v6-dd.binpack
    - test80-oct2022-16tb7p-filter-v6-dd.binpack
    - test80-nov2022-16tb7p-filter-v6-dd.binpack

num-epochs: 1000

lr: 4.375e-4
gamma: 0.995
start-lambda: 0.8
end-lambda: 0.7
```

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move:
nn-epoch899.nnue : 4.6 +/- 1.4

Passed STC:
https://tests.stockfishchess.org/tests/view/6645454893ce6da3e93b31ae
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
Total: 95232 W: 24598 L: 24194 D: 46440
Ptnml(0-2): 294, 11215, 24180, 11647, 280

Passed LTC:
https://tests.stockfishchess.org/tests/view/6645522d93ce6da3e93b31df
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 320544 W: 81432 L: 80524 D: 158588
Ptnml(0-2): 164, 35659, 87696, 36611, 142

bench 1955748
linrock added a commit to linrock/Stockfish that referenced this pull request May 17, 2024
Created by first retraining the spsa-tuned main net `nn-ae6a388e4a1a.nnue` with:
- using v6-dd data without bestmove captures removed
- addition of T80 mar2024 data
- increasing loss by 20% when Q is too high
- torch.compile changes for marginal training speed gains

And then SPSA tuning weights of epoch 899 following methods described in:
official-stockfish#5149

This net was reached at 92k out of 120k steps in this 70+0.7 th 7 SPSA tuning run:
https://tests.stockfishchess.org/tests/view/66413b7df9f4e8fc783c9bbb
Thanks to @Viren6 for suggesting usage of:
- c value 4 for the weights
- c value 128 for the biases

Scripts for automating applying fishtest spsa params to exporting tuned .nnue are in:
https://github.com/linrock/nnue-tools/tree/master/spsa

Before spsa tuning, epoch 899 was nn-f85738aefa84.nnue
https://tests.stockfishchess.org/tests/view/663e5c893a2f9702074bc167

After initially training with max-epoch 800, training was resumed with max-epoch 1000.

```
experiment-name: 3072--S11--more-data-v6-dd-t80-mar2024--see-ge0-20p-more-loss-high-q-sk28-l8
nnue-pytorch-branch: linrock/nnue-pytorch/3072-r21-skip-more-wdl-see-ge0-20p-more-loss-high-q-torch-compile-more

start-from-engine-test-net: False
start-from-model: /data/config/apr2024-3072/nn-ae6a388e4a1a.nnue

early-fen-skipping: 28
training-dataset:
  /data/S11-mar2024/:
    - leela96.v2.min.binpack

    - test60-2021-11-12-novdec-12tb7p.v6-dd.min.binpack
    - test78-2022-01-to-05-jantomay-16tb7p.v6-dd.min.binpack

    - test80-2022-06-jun-16tb7p.v6-dd.min.binpack

    - test80-2022-08-aug-16tb7p.v6-dd.min.binpack
    - test80-2022-09-sep-16tb7p.v6-dd.min.binpack

    - test80-2023-01-jan-16tb7p.v6-sk20.min.binpack
    - test80-2023-02-feb-16tb7p.v6-sk20.min.binpack
    - test80-2023-03-mar-2tb7p.v6-sk16.min.binpack
    - test80-2023-04-apr-2tb7p.v6-sk16.min.binpack
    - test80-2023-05-may-2tb7p.v6.min.binpack

    # official-stockfish#4782
    - test80-2023-06-jun-2tb7p.binpack
    - test80-2023-07-jul-2tb7p.binpack

    # official-stockfish#4972
    - test80-2023-08-aug-2tb7p.v6.min.binpack
    - test80-2023-09-sep-2tb7p.binpack
    - test80-2023-10-oct-2tb7p.binpack

    # S9 new data: official-stockfish#5056
    - test80-2023-11-nov-2tb7p.binpack
    - test80-2023-12-dec-2tb7p.binpack

    # S10 new data: official-stockfish#5149
    - test80-2024-01-jan-2tb7p.binpack
    - test80-2024-02-feb-2tb7p.binpack

    # S11 new data
    - test80-2024-03-mar-2tb7p.binpack

  /data/filt-v6-dd/:
    - test77-dec2021-16tb7p-filter-v6-dd.binpack
    - test78-juntosep2022-16tb7p-filter-v6-dd.binpack
    - test79-apr2022-16tb7p-filter-v6-dd.binpack
    - test79-may2022-16tb7p-filter-v6-dd.binpack
    - test80-jul2022-16tb7p-filter-v6-dd.binpack
    - test80-oct2022-16tb7p-filter-v6-dd.binpack
    - test80-nov2022-16tb7p-filter-v6-dd.binpack

num-epochs: 1000

lr: 4.375e-4
gamma: 0.995
start-lambda: 0.8
end-lambda: 0.7
```

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move:
nn-epoch899.nnue : 4.6 +/- 1.4

Passed STC:
https://tests.stockfishchess.org/tests/view/6645454893ce6da3e93b31ae
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
Total: 95232 W: 24598 L: 24194 D: 46440
Ptnml(0-2): 294, 11215, 24180, 11647, 280

Passed LTC:
https://tests.stockfishchess.org/tests/view/6645522d93ce6da3e93b31df
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 320544 W: 81432 L: 80524 D: 158588
Ptnml(0-2): 164, 35659, 87696, 36611, 142

bench 1995552
vondele pushed a commit to vondele/Stockfish that referenced this pull request May 18, 2024
Created by first retraining the spsa-tuned main net `nn-ae6a388e4a1a.nnue` with:
- using v6-dd data without bestmove captures removed
- addition of T80 mar2024 data
- increasing loss by 20% when Q is too high
- torch.compile changes for marginal training speed gains

And then SPSA tuning weights of epoch 899 following methods described in:
official-stockfish#5149

This net was reached at 92k out of 120k steps in this 70+0.7 th 7 SPSA tuning run:
https://tests.stockfishchess.org/tests/view/66413b7df9f4e8fc783c9bbb
Thanks to @Viren6 for suggesting usage of:
- c value 4 for the weights
- c value 128 for the biases

Scripts for automating applying fishtest spsa params to exporting tuned .nnue are in:
https://github.com/linrock/nnue-tools/tree/master/spsa

Before spsa tuning, epoch 899 was nn-f85738aefa84.nnue
https://tests.stockfishchess.org/tests/view/663e5c893a2f9702074bc167

After initially training with max-epoch 800, training was resumed with max-epoch 1000.

```
experiment-name: 3072--S11--more-data-v6-dd-t80-mar2024--see-ge0-20p-more-loss-high-q-sk28-l8
nnue-pytorch-branch: linrock/nnue-pytorch/3072-r21-skip-more-wdl-see-ge0-20p-more-loss-high-q-torch-compile-more

start-from-engine-test-net: False
start-from-model: /data/config/apr2024-3072/nn-ae6a388e4a1a.nnue

early-fen-skipping: 28
training-dataset:
  /data/S11-mar2024/:
    - leela96.v2.min.binpack

    - test60-2021-11-12-novdec-12tb7p.v6-dd.min.binpack
    - test78-2022-01-to-05-jantomay-16tb7p.v6-dd.min.binpack

    - test80-2022-06-jun-16tb7p.v6-dd.min.binpack

    - test80-2022-08-aug-16tb7p.v6-dd.min.binpack
    - test80-2022-09-sep-16tb7p.v6-dd.min.binpack

    - test80-2023-01-jan-16tb7p.v6-sk20.min.binpack
    - test80-2023-02-feb-16tb7p.v6-sk20.min.binpack
    - test80-2023-03-mar-2tb7p.v6-sk16.min.binpack
    - test80-2023-04-apr-2tb7p.v6-sk16.min.binpack
    - test80-2023-05-may-2tb7p.v6.min.binpack

    # official-stockfish#4782
    - test80-2023-06-jun-2tb7p.binpack
    - test80-2023-07-jul-2tb7p.binpack

    # official-stockfish#4972
    - test80-2023-08-aug-2tb7p.v6.min.binpack
    - test80-2023-09-sep-2tb7p.binpack
    - test80-2023-10-oct-2tb7p.binpack

    # S9 new data: official-stockfish#5056
    - test80-2023-11-nov-2tb7p.binpack
    - test80-2023-12-dec-2tb7p.binpack

    # S10 new data: official-stockfish#5149
    - test80-2024-01-jan-2tb7p.binpack
    - test80-2024-02-feb-2tb7p.binpack

    # S11 new data
    - test80-2024-03-mar-2tb7p.binpack

  /data/filt-v6-dd/:
    - test77-dec2021-16tb7p-filter-v6-dd.binpack
    - test78-juntosep2022-16tb7p-filter-v6-dd.binpack
    - test79-apr2022-16tb7p-filter-v6-dd.binpack
    - test79-may2022-16tb7p-filter-v6-dd.binpack
    - test80-jul2022-16tb7p-filter-v6-dd.binpack
    - test80-oct2022-16tb7p-filter-v6-dd.binpack
    - test80-nov2022-16tb7p-filter-v6-dd.binpack

num-epochs: 1000

lr: 4.375e-4
gamma: 0.995
start-lambda: 0.8
end-lambda: 0.7
```

Training data can be found at:
https://robotmoon.com/nnue-training-data/

Local elo at 25k nodes per move:
nn-epoch899.nnue : 4.6 +/- 1.4

Passed STC:
https://tests.stockfishchess.org/tests/view/6645454893ce6da3e93b31ae
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
Total: 95232 W: 24598 L: 24194 D: 46440
Ptnml(0-2): 294, 11215, 24180, 11647, 280

Passed LTC:
https://tests.stockfishchess.org/tests/view/6645522d93ce6da3e93b31df
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 320544 W: 81432 L: 80524 D: 158588
Ptnml(0-2): 164, 35659, 87696, 36611, 142

closes official-stockfish#5254

bench 1995552
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
functional-change 🚀 gainer Gains elo to be merged Will be merged shortly
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants