Skip to content

Commit

Permalink
Typo in morse potential documentation, dx -> dr for computing eigen e…
Browse files Browse the repository at this point in the history
…nergy
  • Loading branch information
ajarifi committed May 19, 2024
1 parent e617041 commit 83d2267
Show file tree
Hide file tree
Showing 2 changed files with 8 additions and 8 deletions.
8 changes: 4 additions & 4 deletions test/MorsePotential.jl
Original file line number Diff line number Diff line change
Expand Up @@ -122,10 +122,10 @@ println(raw"""
```math
\begin{aligned}
E_n
&= \int \psi^\ast_n(r) \hat{H} \psi_n(r) \mathrm{d}x \\
&= \int \psi^\ast_n(r) \left[ \hat{V} + \hat{T} \right] \psi(r) \mathrm{d}x \\
&= \int \psi^\ast_n(r) \left[ V(r) - \frac{\hbar^2}{2m} \frac{\mathrm{d}^{2}}{\mathrm{d} r^{2}} \right] \psi(r) \mathrm{d}x \\
&\simeq \int \psi^\ast_n(r) \left[ V(r)\psi(r) -\frac{\hbar^2}{2m} \frac{\psi(r+\Delta r) - 2\psi(r) + \psi(r-\Delta r)}{\Delta r^{2}} \right] \mathrm{d}x.
&= \int \psi^\ast_n(r) \hat{H} \psi_n(r) \mathrm{d}r \\
&= \int \psi^\ast_n(r) \left[ \hat{V} + \hat{T} \right] \psi(r) \mathrm{d}r \\
&= \int \psi^\ast_n(r) \left[ V(r) - \frac{\hbar^2}{2m} \frac{\mathrm{d}^{2}}{\mathrm{d} r^{2}} \right] \psi(r) \mathrm{d}r \\
&\simeq \int \psi^\ast_n(r) \left[ V(r)\psi(r) -\frac{\hbar^2}{2m} \frac{\psi(r+\Delta r) - 2\psi(r) + \psi(r-\Delta r)}{\Delta r^{2}} \right] \mathrm{d}r.
\end{aligned}
```
Expand Down
8 changes: 4 additions & 4 deletions test/result/MorsePotential.log
Original file line number Diff line number Diff line change
Expand Up @@ -785,10 +785,10 @@
```math
\begin{aligned}
E_n
&= \int \psi^\ast_n(r) \hat{H} \psi_n(r) \mathrm{d}x \\
&= \int \psi^\ast_n(r) \left[ \hat{V} + \hat{T} \right] \psi(r) \mathrm{d}x \\
&= \int \psi^\ast_n(r) \left[ V(r) - \frac{\hbar^2}{2m} \frac{\mathrm{d}^{2}}{\mathrm{d} r^{2}} \right] \psi(r) \mathrm{d}x \\
&\simeq \int \psi^\ast_n(r) \left[ V(r)\psi(r) -\frac{\hbar^2}{2m} \frac{\psi(r+\Delta r) - 2\psi(r) + \psi(r-\Delta r)}{\Delta r^{2}} \right] \mathrm{d}x.
&= \int \psi^\ast_n(r) \hat{H} \psi_n(r) \mathrm{d}r \\
&= \int \psi^\ast_n(r) \left[ \hat{V} + \hat{T} \right] \psi(r) \mathrm{d}r \\
&= \int \psi^\ast_n(r) \left[ V(r) - \frac{\hbar^2}{2m} \frac{\mathrm{d}^{2}}{\mathrm{d} r^{2}} \right] \psi(r) \mathrm{d}r \\
&\simeq \int \psi^\ast_n(r) \left[ V(r)\psi(r) -\frac{\hbar^2}{2m} \frac{\psi(r+\Delta r) - 2\psi(r) + \psi(r-\Delta r)}{\Delta r^{2}} \right] \mathrm{d}r.
\end{aligned}
```

Expand Down

0 comments on commit 83d2267

Please sign in to comment.