Oliver Purschke 12 August, 2017
library(stringr)
library(knitr)
library(vegdata)
library(doParallel)
library(dplyr)
library(plyr)
library(Taxonstand)
library(rgbif)
path.sPlot <- "/))
home/oliver/Dokumente/PhD/PostPhD/IDiv/sDiv/sPlot/Analyses/Data/Species/
sPlot/sPlot_14_04_2015/"
sPlot.version <- "sPlot_14_4_2015_species"
splot.species <- read.csv(paste0(path.sPlot, sPlot.version, ".csv"), sep = "\t")
gc()
head(splot.species)
## PlotObservationID Taxonomy Taxon.group Taxon.group.ID
## 1 1 Pasl2012 Unknown 0
## 2 1 Pasl2012 Unknown 0
## 3 1 Pasl2012 Unknown 0
## 4 1 Pasl2012 Unknown 0
## 5 1 Pasl2012 Unknown 0
## 6 1 Pasl2012 Unknown 0
## Turboveg2.concept Matched.concept Match
## 1 Allantoparmelia almquistii Allantoparmelia almquistii 0
## 2 Andreaea rupestris Andreaea rupestris 0
## 3 Arctoparmelia centrifuga Arctoparmelia centrifuga 0
## 4 Cetraria nigricans Cetraria nigricans 0
## 5 Cladonia amaurocraea Cladonia amaurocraea 0
## 6 Cladonia arbuscula subsp. lat. Cladonia arbuscula subsp. lat. 0
## Original.taxon.concept Layer Cover.. Cover.code x_
## 1 0 1 1 NA
## 2 0 2 2 NA
## 3 0 5 5 NA
## 4 0 2 2 NA
## 5 0 1 1 NA
## 6 0 2 2 NA
Use the Matched.concept
column (Federhen 2010), as it already contains some standardization by Stephan Hennekkens according to synbiosys[1].
splot.species$Matched.concept<- as.character(splot.species$Matched.concept)
try3.species <- read.csv("/home/oliver/Dokumente/PhD/PostPhD/IDiv/sDiv/sPlot/Analyses/Data/
Species/TRY/Species/TRY30_Gapfilling2015_Species.csv")
head(try3.species)
## AccSpeciesID Species
## 1 1 Aa sp
## 2 2 Abarema adenophora
## 3 3 Abarema barbouriana
## 4 4 Abarema brachystachya
## 5 6 Abarema jupunba
## 6 7 Abarema laeta
spec.list.TRY.sPlot <- sort(unique(c(as.character(splot.species$Matched.concept),
as.character(try3.species$Species))))
length(spec.list.TRY.sPlot)
Create dataframe that will later hold the original (uncleaned) names in sPlot and TRY:
spec.list.TRY.sPlot.2 <- cbind(spec.list.TRY.sPlot, spec.list.TRY.sPlot,
spec.list.TRY.sPlot)
str(spec.list.TRY.sPlot.2)
dim(spec.list.TRY.sPlot.2)
spec.list.TRY.sPlot.2 <- as.data.frame(spec.list.TRY.sPlot.2)
Convert factors into characters:
spec.list.TRY.sPlot.2[,1] <- as.character(spec.list.TRY.sPlot.2[,1])
spec.list.TRY.sPlot.2[,2] <- as.character(spec.list.TRY.sPlot.2[,2])
spec.list.TRY.sPlot.2[,3] <- as.character(spec.list.TRY.sPlot.2[,3])
Give column names[2]:
colnames(spec.list.TRY.sPlot.2) <- c("names.sPlot.TRY", "names.corr.string", "sPlot.TRY")
write.csv(spec.list.TRY.sPlot.2, file = "spec.list.TRY3.sPlot2.csv")
Species in sPlot 2.0:
spec.list.TRY.sPlot.2$sPlot.TRY[which(spec.list.TRY.sPlot.2$names.sPlot.TRY %in%
unique(splot.species$Matched.concept))] <- "S"
Species in TRY 3.0:
spec.list.TRY.sPlot.2$sPlot.TRY[which(spec.list.TRY.sPlot.2$names.sPlot.TRY %in%
unique(try3.species$Species))] <- "T"
Species that are both in sPlot 2.0 and TRY 3.0
spec.list.TRY.sPlot.2$sPlot.TRY[which(spec.list.TRY.sPlot.2$names.sPlot.TRY %in%
unique(try3.species$Species) &
spec.list.TRY.sPlot.2$names.sPlot.TRY %in%
unique(splot.species$Matched.concept))] <- "ST"
Based one the column Matched.concept
in sPlot
, a list of 4,093 "weird" species names (consisting mainly of trivial names) was generated, and corrected manually by Jürgen Dengler (thereafter JD). Some examples:
- Gras silbrig Bl haarig 133106 → Poaceae sp. [silbrig Bl haarig 133106]
- ×Achnella species → Achnella sp.
- [KHH Composite (breite Bl.)] → Asteraceae sp. [breite Bl.]
- LICH Xanthomaculina hottentotta → Xanthomaculina hottentotta
- cf. Silberknospe 134249 → Spermatophyta sp. [Silberknospe 134249]
Stripping unwanted characters as well as abbreviation (such as hybrid markers) which would prevent name matching:
OriginalNames <- gsub('*', '', OriginalNames, fixed=TRUE)
OriginalNames <- gsub('cf. ', '', OriginalNames, fixed=TRUE)
OriginalNames <- gsub('Cf. ', '', OriginalNames, fixed=TRUE)
OriginalNames <- gsub('[', '', OriginalNames, fixed=TRUE)
OriginalNames <- gsub(']', '', OriginalNames, fixed=TRUE)
OriginalNames <- gsub(' x ', ' ', OriginalNames, fixed=TRUE)
OriginalNames <- gsub('×', '', OriginalNames, fixed=TRUE)
OriginalNames <- gsub('aff ', '', OriginalNames, fixed=TRUE)
OriginalNames <- gsub('(', '', OriginalNames, fixed=TRUE)
OriginalNames <- gsub(')', '', OriginalNames, fixed=TRUE)
OriginalNames <- gsub(' cf ', ' ', OriginalNames, fixed=TRUE)
OriginalNames <- gsub(' aff. ', ' ', OriginalNames, fixed=TRUE)
OriginalNames <- gsub('c‚e', 'ceae', OriginalNames, fixed=TRUE)
OriginalNames <- gsub(' ', ' ', OriginalNames, fixed=TRUE)
OriginalNames <- gsub(' ', ' ', OriginalNames, fixed=TRUE)
OriginalNames <- gsub(' ', ' ', OriginalNames, fixed=TRUE)
OriginalNames <- gsub('x-', '', OriginalNames, fixed=TRUE)
OriginalNames <- gsub('X-', '', OriginalNames, fixed=TRUE)
OriginalNames <- gsub('like ', '', OriginalNames, fixed=TRUE)
OriginalNames <- gsub(',', '', OriginalNames, fixed=TRUE)
For all names, that have a number in their first word, and consist of > 1 words, remove that word:
library(stringr)
firstWordWithNumbers <- grepl('[0-9]', word(OriginalNames, 1))
numberOfWords <- sapply(gregexpr("\\W+", OriginalNames), length) + 1
OriginalNames[firstWordWithNumbers & numberOfWords > 1] <-
sapply(OriginalNames[firstWordWithNumbers & numberOfWords > 1],
function(x) substr(x, start=regexpr(pattern =' ', text=x)+1, stop=nchar(x)))
Correct some name abbreviations using taxname.abbr
in vegdata
:
CleanedNames <- taxname.abbr(OriginalNames)
save(CleanedNames, file = "CleanedNames.Rdata")
write.csv(CleanedNames, file = "CleanedNames.csv")
length(CleanedNames)
Create a data frame from the string cleaned names:
CleanedNames.df <- as.data.frame(CleanedNames, stringsAsFactors=FALSE)
spec.list.TRY.sPlot.3 <- cbind(spec.list.TRY.sPlot.2[,c(1,2,4)], CleanedNames.df,
CleanedNames.df)
Skip column names.corr.string
, as the cleanednames.df
column as well as another column that will include the names corrected by JD.
colnames(spec.list.TRY.sPlot.3) <- c("index","original.names.sPlot.TRY","sPlot.TRY",
"CleanedNames","CleanedNames.Juergen")
Tax_Back_sPlot2_TRY3 <- spec.list.TRY.sPlot.3
save(Tax_Back_sPlot2_TRY3, file = "Tax_Back_sPlot2_TRY3.Rdata")
load("Tax_Back_sPlot2_TRY3.Rdata")
write.csv(Tax_Back_sPlot2_TRY3, file = "Tax_Back_sPlot2_TRY3.csv")
head(Tax_Back_sPlot2_TRY3)
names.correct.JD <- read.csv("weird.names_JD_string_correct.csv")
str(names.correct.JD)
head(names.correct.JD)
index <- match(names.correct.JD$weird.names, Tax_Back_sPlot2_TRY3$original.names.sPlot.TRY)
Tax_Back_sPlot2_TRY3$CleanedNames.JD[index] <- names.correct.JD$Name.corrected
This was done manually in a csv-file.
CleanedNames.JD <- Tax_Back_sPlot2_TRY3$CleanedNames.JD
write.csv(CleanedNames.JD, file = "CleanedNames.JD.csv")
Tax_Back_sPlot2_TRY3$CleanedNames.JD <- CleanedNames.JD
save(Tax_Back_sPlot2_TRY3, file = "Tax_Back_sPlot2_TRY3.Rdata")
Match names against Taxonomic Name Resolution Service (TNRS)
... of 5000 species:
seq1 <- seq(from =1, to = 120001, 5000)
seq2 <- seq(from =5000, to = 125000, 5000)
for(i in 1:length(seq1)) {
write.csv(Tax_Back_sPlot2_TRY3$CleanedNames.JD[seq1[i]:seq2[i]],
file = paste(paste("tnrs_submit", seq1[i], sep = "_"), "csv", sep = "."))
}
The single csv-files, containing 5,000 names each, were submitted to Taxonomic Name Resolution Service web application (Boyle et al. 2013, iPlant Collaborative (2015)). TNRS version 4.0 was used, which became available in August 2015 (this version also included The Plant List version 1.1).
The following settings were used for resolving names on TNRS.
The initial TNRS name resolution run was based on the five standard sources that were ranked according to preference in the following order (default of TNRS):
- The Plant List (TPL)(The Plant List 2013)
- The Global Compositae Checklist (GCC)(Flann 2009)
- The International Legume Database and Information Service (ILDIS)(International legume database and information service 2006)
- Tropicos (Missouri Botanical Garden 2013)
- PLANTS Database (USDA)(USDA, NRCS 2012)
Because it is possible that the best match is found in lower ranked sources, see section TNRS settings, two additional name resolution runs were realized in which the highest ranking was given to (1) Tropicos, or (2) the sixth source available in TNRS, NCBI (The National Center for Biotechnology Information's Taxonomy database; (Federhen 2010)), respectively, see section TNRS settings.
Resolved names were assigned to families based on the APGIII classification (Chase & Reveal 2009), the same classification system used by Tropicos.
Once the matching process was finished, results were retrieved from TNRS using the Detailed Download
option that included the full name information (parsed components, warnings, links to sources, etc.). We retrived the single best match for each species, constrained by source (TNRS default), where the name in the first source was selected as best match, unless there was no suitable match found
in that source, the match from the next lower-ranked source was selected, until all resources where exhausted.
Manually inspect the TNRS-results table in a spreadsheat application (i.e. LibreOffice or Excel). Starting with the highest taxonomic rank considered (i.e. Family). For instance, if manual checking of the TRNS output reveals that all accepted names or synonyms that have accuracy scores >0.9 are correct taxon names, use the following selection procedure:
- Name_matched_rank (==Family)
- Taxonomic_status (==Accepted, Synomyn)
- Family_score (>0.9)
Continue this selection procedure for entries that were matched at lower taxonomic ranks, i.e. genus, species, etc..
Find out how many cores are available:
detectCores()
## [1] 4
Create cluster with desired number of cores:
cl <- makeCluster(3)
Register cluster:
registerDoParallel(cl)
Find out how many cores are being used:
getDoParWorkers()
Read the downloaded TNRS files, including 5000 names each[3] into R
.
setwd("/home/oliver/Downloads/")
seq1 <- seq(from =1, to = 120001, 5000)
system.time(
x <- foreach(i = 1:length(seq1), .combine = rbind) %dopar% {
read.csv(paste(paste("/home/oliver/Downloads/tnrs.tpl", seq1[i], sep = "."),
"csv", sep = "."), sep = ",", stringsAsFactors = FALSE, skip = 0,
head = T)[-1, ]
}
)
tnrs.tpl <- x
Assign index to first column:
tnrs.tpl$Name_number <- 1:length(tnrs.tpl$Name_number)
-
Open
tnrs.tpl
in a spread sheat program and sort according toName_matched_rank
,Taxonomic_status
andFamily_score
[4]. -
Repeat selection for entries matched at lower taxonomic ranks, such
Name_matched_rank
==:- forma
- genus
- infraspecies
- ...
-
Adjust accuracy score threshold values, e.g. use higher or lower values for infraspec., variety, ...
Manually inspect sorted table and select all entries at the highest hierarchical level (family). Manually identify the family accuracy score threshold value above which a name can be considered a correct name. In the following case, this corresponds to a score $>$0.88.
index.family <- tnrs.tpl[which(tnrs.tpl$Name_matched_rank == "family" &
(tnrs.tpl$Taxonomic_status == "Accepted" |
tnrs.tpl$Taxonomic_status == "Synonym") &
tnrs.tpl$Family_score > 0.88), 1]
length(index.family)
index.forma <- tnrs.tpl[which(tnrs.tpl$Name_matched_rank == "forma"), 1]
length(index.forma)
index.genus <- tnrs.tpl[which(tnrs.tpl$Name_matched_rank == "genus" &
tnrs.tpl$Taxonomic_status == "Accepted" &
tnrs.tpl$Genus_score > 0.83), 1]
length(index.genus)
index.infraspec <- tnrs.tpl[which(tnrs.tpl$Name_matched_rank == "infraspecies"), 1]
length(index.infraspec)
index.species <- tnrs.tpl[which(tnrs.tpl$Name_matched_rank == "species" &
(tnrs.tpl$Taxonomic_status == "Accepted" |
tnrs.tpl$Taxonomic_status == "Synonym") &
tnrs.tpl$Genus_score > 0.78 &
tnrs.tpl$Name_score > 0.93), 1]
length(index.species)
index.subspec <- tnrs.tpl[which(tnrs.tpl$Name_matched_rank == "subspecies" &
(tnrs.tpl$Taxonomic_status == "Accepted" |
tnrs.tpl$Taxonomic_status == "Synonym")), 1]
length(index.subspec)
index.variety <- tnrs.tpl[which(tnrs.tpl$Name_matched_rank == "variety" &
(tnrs.tpl$Taxonomic_status == "Accepted" |
tnrs.tpl$Taxonomic_status == "Synonym")), 1]
length(index.variety)
index.spermatophyt <- tnrs.tpl[which(tnrs.tpl$Name_matched == "No suitable matches found."
& word(tnrs.tpl$Name_submitted, 1) == "Spermatophyta")
, 1]
length(index.spermatophyt)
Select names that do not fulfill the search criteria, i.e. that were not selected as certain species, for further name matching.
index.tpl <- c(index.family, index.forma, index.genus, index.species, index.subspec,
index.variety, index.spermatophyt)
length((index.tpl))
tnrs.tpl.certain <- tnrs.tpl[index.tpl,]
dim(tnrs.tpl.certain)
save(tnrs.tpl.certain, file = "tnrs.tpl.certain.Rdata")
write.csv(tnrs.tpl.certain, file = "tnrs.tpl.certain.csv")
tnrs.tpl.uncertain <- tnrs.tpl[tnrs.tpl$Name_number %in% index.tpl == F, ]
dim(tnrs.tpl.uncertain)
save(tnrs.tpl.uncertain, file = "tnrs.tpl.uncertain.Rdata")
write.csv(tnrs.tpl.uncertain, file = "tnrs.tpl.uncertain.csv")
Generate list of uncertain
species that are still to be resolved on TNRS:
write.csv(tnrs.tpl.uncertain[,2], file = "tnrs.tpl.uncertain.upload.csv")
Because the matching procedure above, giving the highest ranking to the sources TPL, GCC and ILDIS (which seem to be the most reliable and up-to-date), will not always result in the match, in cases where better matching scores are achieved in lower ranked sources. Therefore the TNRS matching procedure was continued for the uncertain
species from the previous step, but assigning the highest rank to the source Tropicos
, while repeating the steps that were used to generate tnrs.tpl
.[5]
setwd("/home/oliver/Downloads/")
system.time(
x <- foreach(i = 1:length(seq1), .combine = rbind) %dopar% {
read.csv(paste(paste("/home/oliver/Downloads/tnrs.trop", seq1[i], sep = "."),
"csv", sep = "."), sep = ",", stringsAsFactors = FALSE, skip = 0,
head = T)[-1, ]
}
)
tnrs.trop <- x
str(tnrs.trop)
tnrs.trop$Name_number <- 1:length(tnrs.trop$Name_number)
tnrs.trop.small <- tnrs.trop[tnrs.all.small.uncertain$Name_number, ]
str(tnrs.trop.small)
save(tnrs.trop.small, file = "tnrs.trop.small.Rdata")
write.csv(tnrs.trop.small, file = "tnrs.trop.small.csv")
Using the same procedure as above.
index.family <- tnrs.trop.small[which(tnrs.trop.small$Name_matched_rank == "family" &
(tnrs.trop.small$Taxonomic_status == "Accepted"|
tnrs.trop.small$Taxonomic_status == "Synonym")), 1]
length(index.family)
index.forma <- tnrs.trop.small[which(tnrs.trop.small$Name_matched_rank == "forma" &
(tnrs.trop.small$Taxonomic_status == "Accepted" |
tnrs.trop.small$Taxonomic_status == "Synonym")), 1]
length(index.forma)
index.genus <- tnrs.trop.small[which(tnrs.trop.small$Name_matched_rank == "genus" &
(tnrs.trop.small$Taxonomic_status == "Accepted" |
tnrs.trop.small$Taxonomic_status == "Synonym") &
tnrs.trop.small$Genus_score > 0.83 &
tnrs.trop.small$Name_score > 0.5), 1]
length(index.genus)
index.species1 <- tnrs.trop.small[which(tnrs.trop.small$Name_matched_rank == "species" &
(tnrs.trop.small$Taxonomic_status == "Accepted" |
tnrs.trop.small$Taxonomic_status == "Synonym") &
tnrs.trop.small$Genus_score > 0.88 &
tnrs.trop.small$Name_score > 0.9), 1]
length(index.species1)
index.species2 <- tnrs.trop.small[which(tnrs.trop.small$Name_matched_rank == "species" &
(tnrs.trop.small$Taxonomic_status == "Accepted" |
tnrs.trop.small$Taxonomic_status == "Synonym") &
tnrs.trop.small$Genus_score > 0.78 &
tnrs.trop.small$Name_score > 0.94), 1]
length(index.species1)
index.species3 <- tnrs.trop.small[which(tnrs.trop.small$Name_matched_rank == "species" &
(tnrs.trop.small$Taxonomic_status == "Accepted" |
tnrs.trop.small$Taxonomic_status == "Synonym") &
tnrs.trop.small$Genus_score > 0.88 &
tnrs.trop.small$Name_score > 0.49), 1]
length(index.species3)
index.species <- unique(c(index.species1, index.species2, index.species3))
length(index.species)
index.subspec <- tnrs.trop.small[which(tnrs.trop.small$Name_matched_rank == "subspecies" &
(tnrs.trop.small$Taxonomic_status == "Accepted" |
tnrs.trop.small$Taxonomic_status == "Synonym")), 1]
length(index.subspec)
index.variety <- tnrs.trop.small[which(tnrs.trop.small$Name_matched_rank == "variety" &
(tnrs.trop.small$Taxonomic_status == "Accepted" |
tnrs.trop.small$Taxonomic_status == "Synonym")), 1]
length(index.variety)
index.trop <- c(index.family, index.forma, index.genus, index.species, index.subspec,
index.variety)
length((index.trop))
tnrs.trop.small.certain <- tnrs.trop.small[tnrs.trop.small$Name_number %in% index.trop
== T,]
dim(tnrs.trop.small.certain)
save(tnrs.trop.small.certain, file = "tnrs.trop.small.certain.Rdata")
write.csv(tnrs.trop.small.certain, file = "tnrs.trop.small.certain.csv")
tnrs.trop.small.uncertain <- tnrs.trop.small[tnrs.trop.small$Name_number %in% index.trop
== F, ]
dim(tnrs.trop.small.uncertain)
save(tnrs.trop.small.uncertain, file = "tnrs.trop.small.uncertain.Rdata")
write.csv(tnrs.trop.small.uncertain, file = "tnrs.trop.small.uncertain.csv")
Cut the list of the remaining 9,641 unresolved species into chunks of ∼ 5,000 species.
write.csv(tnrs.trop.small.uncertain$Name_submitted[1:5000], file = "trop.uncert.1.csv")
write.csv(tnrs.trop.small.uncertain$Name_submitted[5001:9641], file = "trop.uncert.5001.csv")
Match these lists against TNRS using the settings decribed above, but rank the additional (sixth) sources in TNRS, The National Center for Biotechnology Information's Taxonomy database NCBI, first.
tnrs.ncbi.1 <- read.csv("/home/oliver/Downloads/tnrs.trop.uncert.1.csv",
stringsAsFactors = FALSE)[-1,]
tnrs.ncbi.2 <- read.csv("/home/oliver/Downloads/tnrs.trop.uncert.5001.csv",
stringsAsFactors = FALSE)[-1,]
tnrs.ncbi <- rbind(tnrs.ncbi.1, tnrs.ncbi.2)
str(tnrs.ncbi)
tnrs.ncbi$Name_number <- tnrs.trop.small.uncertain$Name_number
range(tnrs.ncbi$Name_number)
save(tnrs.ncbi, file = "tnrs.ncbi.Rdata")
write.csv(tnrs.ncbi, file = "tnrs.ncbi.csv")
index.family <- tnrs.ncbi[which(tnrs.ncbi$Name_matched_rank == "family" &
(tnrs.ncbi$Taxonomic_status == "Accepted"|
tnrs.ncbi$Taxonomic_status == "Synonym") &
tnrs.ncbi$Family_score > 0.85), 1]
length(index.family)
index.genus.1 <- tnrs.ncbi[which(tnrs.ncbi$Name_matched_rank == "genus" &
(tnrs.ncbi$Taxonomic_status == "Accepted" |
tnrs.ncbi$Taxonomic_status == "Synonym") &
tnrs.ncbi$Genus_score > 0.89 &
tnrs.ncbi$Name_score > 0.49), 1]
length(index.genus.1)
index.genus.2 <- tnrs.ncbi[which(tnrs.ncbi$Name_matched_rank == "genus" &
(tnrs.ncbi$Taxonomic_status == "Accepted" |
tnrs.ncbi$Taxonomic_status == "Synonym") &
tnrs.ncbi$Genus_score > 0.99 &
tnrs.ncbi$Name_score > 0.2), 1]
length(index.genus.2)
index.genus.3 <- tnrs.ncbi[which(tnrs.ncbi$Name_matched_rank == "genus" &
tnrs.ncbi$Taxonomic_status == "No opinion" &
tnrs.ncbi$Genus_score > 0.88 &
tnrs.ncbi$Name_score > 0.49), 1]
length(index.genus.3)
index.genus <- unique(c(index.genus.1, index.genus.2, index.genus.3))
length(index.genus)
index.species.1 <- tnrs.ncbi[which(tnrs.ncbi$Name_matched_rank == "species" &
(tnrs.ncbi$Taxonomic_status == "Accepted" |
tnrs.ncbi$Taxonomic_status == "Synonym") &
tnrs.ncbi$Name_score > 0.94), 1]
length(index.species.1)
index.species.2 <- tnrs.ncbi[which(tnrs.ncbi$Name_matched_rank == "species" &
(tnrs.ncbi$Taxonomic_status == "Accepted" |
tnrs.ncbi$Taxonomic_status == "Synonym") &
tnrs.ncbi$Genus_score > 0.81 &
tnrs.ncbi$Name_score > 0.51), 1]
length(index.species.2)
index.species.3 <- tnrs.ncbi[which(tnrs.ncbi$Name_matched_rank == "species" &
tnrs.ncbi$Taxonomic_status == "No opinion" &
tnrs.ncbi$Genus_score > 0.7 &
tnrs.ncbi$Specific_epithet_score > 0.75), 1]
length(index.species.3)
index.species <- unique(c(index.species.1, index.species.2, index.species.3))
length(index.species)
index.var <- tnrs.ncbi[which((tnrs.ncbi$Name_matched_rank == "subspecies" |
tnrs.ncbi$Name_matched_rank == "unknown" |
tnrs.ncbi$Name_matched_rank == "variety") &
(tnrs.ncbi$Taxonomic_status == "Accepted" |
tnrs.ncbi$Taxonomic_status == "No opinion" |
tnrs.ncbi$Taxonomic_status == "Synonym")), 1]
length(index.var)
index.ncbi <- c(index.family, index.genus, index.species, index.var)
length((index.ncbi))
tnrs.ncbi.certain <- tnrs.ncbi[tnrs.ncbi$Name_number %in% index.ncbi == T,]
dim(tnrs.ncbi.certain)
save(tnrs.ncbi.certain, file = "tnrs.ncbi.certain.Rdata")
write.csv(tnrs.ncbi.certain, file = "tnrs.ncbi.certain.csv")
tnrs.ncbi.uncertain <- tnrs.ncbi[tnrs.ncbi$Name_number %in% index.ncbi == F, ]
dim(tnrs.ncbi.uncertain)
save(tnrs.ncbi.uncertain, file = "tnrs.ncbi.uncertain.Rdata")
write.csv(tnrs.ncbi.uncertain, file = "tnrs.ncbi.uncertain.csv")
tnrs.ncbi
still contained 1,464 uncertain
names that were resolved in the following way:
-
679 names (mainly trivial names) were selected manually and corrected by JD.
-
of those 679 names, 62 were corrected using the matching tools on the TPL webpage (e.g.
Dicra vagin var. clathrata
→Dicranella vaginata
). -
the remaining 785 names were checked manually.
JD.679 <- read.csv("JD.679.csv")
head(JD.679)
Manually correct, in a spread sheat program, some further mispellings (e.g. ABIESNORD.
, xboris
). Select non-JD.corrected
and correct species in tnrs.ncbi.uncertain.corrected.csv
[6].
ncbi.uncertain.corr <- read.csv("/home/oliver/Downloads/tnrs.ncbi.uncertain.corrected.csv")
str(ncbi.uncertain.corr)
Select the 679 JD-species, incl. the 62 species that were corrected manually.
index.JD.corrected <- ncbi.uncertain.corr[which((ncbi.uncertain.corr$for_JD ==
"x" |
ncbi.uncertain.corr$corrected !=
"")), 2]
length(index.JD.corrected)
Further select some correct species within genus
Some species were cut down to the genus level by TNRS, although they might be resolvable using the name matching tools on the TPL webpage. Select those names for further name matching.
index.correct.genus <- ncbi.uncertain.corr[which((ncbi.uncertain.corr$Name_matched_rank ==
"genus" &
ncbi.uncertain.corr$Taxonomic_status ==
"Accepted" &
ncbi.uncertain.corr$Overall_score > 0.6))
, 2]
length(index.correct.genus)
Further select some correct names that were matched at the rank of species
index.correct.species <- ncbi.uncertain.corr[which((ncbi.uncertain.corr$Name_matched_rank ==
"species" &
ncbi.uncertain.corr$Taxonomic_status ==
"Accepted" &
ncbi.uncertain.corr$Overall_score > 0.89))
, 2]
length(index.correct.species)
Create an index for those names that could be further corrected:
index.ncbi <- unique(c(index.JD.corrected, index.correct.genus, index.correct.species))
length(index.ncbi)
ncbi.uncertain.corr.certain <- ncbi.uncertain.corr[ncbi.uncertain.corr$Name_number %in%
index.ncbi == T,]
dim(ncbi.uncertain.corr.certain)
save(ncbi.uncertain.corr.certain, file = "ncbi.uncertain.corr.certain.Rdata")
write.csv(ncbi.uncertain.corr.certain, file = "ncbi.uncertain.corr.certain.csv")
ncbi.uncertain.corr.uncertain <- ncbi.uncertain.corr[ncbi.uncertain.corr$Name_number %in%
index.ncbi == F, ]
dim(ncbi.uncertain.corr.uncertain)
save(ncbi.uncertain.corr.uncertain, file = "ncbi.uncertain.corr.uncertain.Rdata")
write.csv(ncbi.uncertain.corr.uncertain, file = "ncbi.uncertain.corr.uncertain.csv")
Generate names list from ncbi.uncertain.corr.uncertain
to be matched against The Plant List
, using Taxonstand::TPL
.
ncbi.uncertain <- as.character(ncbi.uncertain.corr.uncertain$Name_submitted)
Run "raw" list against TPL
:
Set large edit distance to allow for fuzzy matching, and strip some characters that would prevend matching:
tpl.ncbi.1 <- TPL(ncbi.uncertain, corr=T, diffchar = 9, max.distance = 9)
tpl.ncbi.1 <- gsub("[", "", tpl.ncbi.1)
tpl.ncbi.1 <- gsub("]", "", tpl.ncbi.1)
tpl.ncbi.1 <- gsub("|", "", tpl.ncbi.1)
tpl.ncbi.1 <- gsub("?", "", tpl.ncbi.1)
write.csv(tpl.ncbi.1, file = "tpl.ncbi.1.csv")
Extent each word by *
, to allow for even 'fuzzier' matching:
ncbi.uncertain.2 <- paste(gsub(" ", "* ", ncbi.uncertain), "*", sep = "")
tpl.ncbi.2 <- TPL(ncbi.uncertain.2, corr=T, diffchar = 9, max.distance = 9)
write.csv(tpl.ncbi.2, file = "tpl.ncbi.2.csv")
Truncate each word to its first 3 (5 or 7) letters and extent by *
, to do more fuzzy matching
simpleCap3 <- function(x) {
s <- strsplit(x, " ")[[1]]
paste(paste(substring(s, 1,1), substring(s, 2,3), sep="", collapse="* "), "*", sep = "")
}
simpleCap5 <- function(x) {
s <- strsplit(x, " ")[[1]]
paste(paste(substring(s, 1,1), substring(s, 2,5), sep="", collapse="* "), "*", sep = "")
}
simpleCap7 <- function(x) {
s <- strsplit(x, " ")[[1]]
paste(paste(substring(s, 1,1), substring(s, 2,7), sep="", collapse="* "), "*", sep = "")
}
Apply the string truncation functions above:
ncbi.uncertain.3 <- sapply(ncbi.uncertain, simpleCap3)
Repeat, but instead using simpleCap5
or simpleCap7
. Further, remove some strings to improve name matching:
ncbi.uncertain.3 <- gsub("[", "", ncbi.uncertain.3, fixed = T)
ncbi.uncertain.3 <- gsub("]", "", ncbi.uncertain.3, fixed = T)
ncbi.uncertain.3 <- gsub("|", "", ncbi.uncertain.3, fixed = T)
ncbi.uncertain.3 <- gsub("?", "", ncbi.uncertain.3, fixed = T)
ncbi.uncertain.3 <- gsub("+", "", ncbi.uncertain.3, fixed = T)
ncbi.uncertain.3 <- gsub(".", "", ncbi.uncertain.3, fixed = T)
ncbi.uncertain.3 <- gsub("<", "", ncbi.uncertain.3, fixed = T)
ncbi.uncertain.3 <- gsub("/", "", ncbi.uncertain.3, fixed = T)
str(ncbi.uncertain.3)
tpl.ncbi.3 <- TPL(ncbi.uncertain.3, corr=T, diffchar = 9, max.distance = 9)
write.csv(tpl.ncbi.3, file = "tpl.ncbi.3.csv")
tpl.ncbi.5 <- TPL(ncbi.uncertain.5, corr=T, diffchar = 9, max.distance = 9)
write.csv(tpl.ncbi.5, file = "tpl.ncbi.5.csv")
tpl.ncbi.7 <- TPL(ncbi.uncertain.7, corr=T, diffchar = 9, max.distance = 9)
write.csv(tpl.ncbi.7, file = "tpl.ncbi.7.csv")
Combine tpl.ncbi
tables:
tpl.ncbi <- cbind(tpl.ncbi.1[,c(1,2,6,8,10,12)], tpl.ncbi.2[,c(6,8,10,12)],
tpl.ncbi.3[,c(6,8,10,12)], tpl.ncbi.5[,c(6,8,10,12)],
tpl.ncbi.7[,c(6,8,10,12)])
rownames(tpl.ncbi) <- rownames(tpl.ncbi.7)
tpl.ncbi <- cbind(ncbi.uncertain.corr.uncertain[,1:2], tpl.ncbi)
str(tpl.ncbi)
tpl.ncbi <- tpl.ncbi[,-1]
write.csv(tpl.ncbi, file = "tpl.ncbi.csv")
Manually select correct genera and species in tpl.ncbi
csv-file and add columns Genus.correct
and Species.correct
.
Read the manually corrected tpl.ncbi
table:
tpl.ncbi.2 <- read.csv("tpl.ncbi.csv")
str(tpl.ncbi.2)
names(tpl.ncbi.2)
Select corrected species and concatenate genus and epithet columns:
tpl.ncbi.2$name.correct <- paste(tpl.ncbi.2$Genus.correct, tpl.ncbi.2$Species.correct)
index.corr <- tpl.ncbi.2[which(tpl.ncbi.2$name.correct != " "), 2]
Merge ncbi.uncertain
correspond and tpl.ncbi.2
ncbi.uncertain.corr.uncertain.2 <- join(ncbi.uncertain.corr.uncertain,
tpl.ncbi.2[,c(1,2,6,26:29)], by = "Name_number")
str(ncbi.uncertain.corr.uncertain.2)
names(ncbi.uncertain.corr.uncertain.2)
write.csv(ncbi.uncertain.corr.uncertain.2, file = "ncbi.uncertain.corr.uncertain.2.csv")
ncbi.uncertain.corr.uncertain.2 <- read.csv("ncbi.uncertain.corr.uncertain.2.csv")
If names were not corrected, set Taxonomic.status == ""
ncbi.uncertain.corr.uncertain.2$Status.correct[
ncbi.uncertain.corr.uncertain.2$Status.correct==""] <-
ncbi.uncertain.corr.uncertain.2$Taxonomic.status[
ncbi.uncertain.corr.uncertain.2$Status.correct ==""]
summary(ncbi.uncertain.corr.uncertain.2$Status.correct)
str(ncbi.uncertain.corr.uncertain.2$Status.correct)
... and assign No suitable matches found.
to the remaining species:
ncbi.uncertain.corr.uncertain.2$Status.correct <-
as.character(ncbi.uncertain.corr.uncertain.2$Status.correct)
ncbi.uncertain.corr.uncertain.2$Status.correct
[is.na(ncbi.uncertain.corr.uncertain.2$Status.correct)] <- "No suitable matches found."
Add uncorrected names in column X
to name.correct
:
ncbi.uncertain.corr.uncertain.2$name.correct[
ncbi.uncertain.corr.uncertain.2$Genus.correct==""] <-
as.character(ncbi.uncertain.corr.uncertain.2[,41])[
ncbi.uncertain.corr.uncertain.2$Genus.correct==""]
Assign No suitable matches found.
to remaining species in name.correct
according to Status.correct
.
ncbi.uncertain.corr.uncertain.2$name.correct[ncbi.uncertain.corr.uncertain.2$Status.correct==
"No suitable matches found."] <-
"No suitable matches found."
write.csv(ncbi.uncertain.corr.uncertain.2, file = "ncbi.uncertain.corr.uncertain.2.csv")
Done! Use ncbi.uncertain.corr.uncertain.2
for later merging with the other data sets.
Create extra column species.correct
and add the 679 species from status=accepted
in JD.corrected
. Assign status No suitable matches found.
to the remaining non-resolved species.
JD.correct <- read.csv("/home/oliver/Dokumente/PhD/PostPhD/IDiv/sDiv/sPlot/Analyses/
Code/Unresolved_sPlot2.0_TRY3.0_2_JD.csv", stringsAsFactors=FALSE)
JD.correct$Taxon[JD.correct$Taxon==""] <- "No suitable matches found."
str(JD.correct)
str(ncbi.uncertain.corr.certain)
Join to ncbi.uncertain.corr.certain
based on Name_number
:
ncbi.certain.JD.corr <- join(ncbi.uncertain.corr.certain, JD.correct[,c(2,3,8)],
by = "Name_number")
str(ncbi.certain.JD.corr)
write.csv(ncbi.certain.JD.corr, file = "ncbi.certain.JD.corr.csv")
ncbi.certain.JD.corr.2 <- read.csv("ncbi.certain.JD.corr.csv",
stringsAsFactors=FALSE)
str(ncbi.certain.JD.corr.2)
Add the corrected names from ncbi.certain.JD.corr.2$corrected
to name.correct
:
ncbi.certain.JD.corr.2$name.correct[is.na(ncbi.certain.JD.corr.2$name.correct)] <-
ncbi.certain.JD.corr.2$corrected[is.na(ncbi.certain.JD.corr.2$name.correct)]
write.csv(ncbi.certain.JD.corr.2, file = "ncbi.certain.JD.corr.2.csv")
Fill the missing names in name.correct
, because they were correctly resolved.
ncbi.certain.JD.corr.2$name.correct[ncbi.certain.JD.corr.2$name.correct==""] <-
ncbi.certain.JD.corr.2$Name_matched[ncbi.certain.JD.corr.2$name.correct==""]
All entries in ncbi.certain.JD.corr.2
are assigned to a name. Now merge it with ncbi.uncertain.corr.uncertain.2
(~1,400 names). Add tag manual matching
. Means the scores from TNRS matching are useless here, but nevertheless keep them.
ncbi.certain.JD.corr.3 <- read.csv("ncbi.certain.JD.corr.3.csv",
stringsAsFactors=FALSE)
str(ncbi.certain.JD.corr.3)
ncbi.uncertain.corr.uncertain.3 <- read.csv("ncbi.uncertain.corr.uncertain.3.csv",
stringsAsFactors=FALSE)
str(ncbi.uncertain.corr.uncertain.3)
Add status No suitable matches found.
or Accepted
in ncbi.certain.JD.corr.3
ncbi.certain.JD.corr.3$Status.correct[ncbi.certain.JD.corr.3$name.correct ==
"No suitable matches found."] <-
"No suitable matches found."
ncbi.certain.JD.corr.3$Status.correct[
is.na(ncbi.certain.JD.corr.3$Status.correct)] <-
"Accepted"
write.csv(ncbi.certain.JD.corr.3, file = "ncbi.certain.JD.corr.3.csv")
In ncbi.certain.JD.corr.3
, assign all entries an x
for Manual matching
:
ncbi.certain.JD.corr.3$Manual.matching <- "x"
ncbi.uncertain.corr.uncertain.3$Manual.matching <- "x"
write.csv(ncbi.certain.JD.corr.3, file = "ncbi.certain.JD.corr.3.csv")
write.csv(ncbi.uncertain.corr.uncertain.3, file = "ncbi.uncertain.corr.uncertain.3.csv")
names(ncbi.certain.JD.corr.3)
names(ncbi.uncertain.corr.uncertain.3)
ncbi.certain.JD.corr.3 <- ncbi.certain.JD.corr.3[,-c(1,2,3)]
ncbi.uncertain.corr.uncertain.3 <- ncbi.uncertain.corr.uncertain.3[,-c(1,2)]
match(names(ncbi.uncertain.corr.uncertain.3), names(ncbi.certain.JD.corr.3))
ncbi.uncertain.comb <- rbind(ncbi.uncertain.corr.uncertain.3, ncbi.certain.JD.corr.3)
dim(ncbi.uncertain.comb)
write.csv(ncbi.uncertain.comb, file = "ncbi.uncertain.comb.csv")
Read in tnrs.ncbi.certain
:
tnrs.ncbi.certain <- read.csv("/home/oliver/Downloads/tnrs.ncbi.certain.csv",
stringsAsFactors=FALSE)
str(tnrs.ncbi.certain)
Read in tnrs.ncbi.certain"
:
tnrs.ncbi.certain <- read.csv("/home/oliver/Downloads/tnrs.ncbi.certain.csv",
stringsAsFactors=FALSE)
str(tnrs.ncbi.certain)
To resolve names that were reduced to genus-level, identify Name_submitted
where Overall_score
== 0.5:
index0.5 <- tnrs.ncbi.certain[which(tnrs.ncbi.certain$Overall_score == 0.5), 2]
tpl0.5 <- tnrs.ncbi.certain$Name_submitted[tnrs.ncbi.certain$Overall_score == 0.5]
names(tpl0.5) <- index0.5
str(tpl0.5)
length(tpl0.5)
tpl0.5[1:100]
save(tpl0.5, file = "tpl0.5.Rdata")
Do some string cleaning to improve matching:
tpl0.5 <- gsub("[", "", tpl0.5, fixed = T)
tpl0.5 <- gsub("]", "", tpl0.5, fixed = T)
tpl0.5 <- gsub("|", "", tpl0.5, fixed = T)
tpl0.5 <- gsub("?", "", tpl0.5, fixed = T)
tpl0.5 <- gsub("+", "", tpl0.5, fixed = T)
tpl0.5 <- gsub(".", "", tpl0.5, fixed = T)
tpl0.5 <- gsub("<", "", tpl0.5, fixed = T)
tpl0.5 <- gsub("/", "", tpl0.5, fixed = T)
system.time(
tpl0.5.res <- TPL(tpl0.5, corr=T, diffchar = 2, max.distance = 1)
)
Extent each word by *
, to allow for even 'fuzzier' matching:
write.csv(tpl0.5.res, file = "tpl0.5.res.csv")
tpl0.5.2 <- paste(gsub(" ", "* ", tpl0.5), "*", sep = "")
tpl0.5.2.res <- TPL(tpl0.5.2, corr=T, diffchar = 2, max.distance = 1)
write.csv(tpl0.5.2.res, file = "tpl0.5.2.res.csv")
Truncate each word to its first 5 (or 7) letters and extent words by *
, to do more fuzzy matching:
tpl0.5.5 <- sapply(tpl0.5, simpleCap5)
tpl0.5.5.res <- TPL(tpl0.5.5, corr=T, diffchar = 2, max.distance = 1)
write.csv(tpl0.5.5.res, file = "tpl0.5.5.res.csv")
tpl0.5.7 <- sapply(tpl0.5, simpleCap7)
tpl0.5.7.res <- TPL(tpl0.5.7, corr=T, diffchar = 2, max.distance = 1)
write.csv(tpl0.5.7.res, file = "tpl0.5.7.res.csv")
tpl0.5.res <- read.csv("tpl0.5.res.csv", stringsAsFactors=FALSE)
tpl0.5.2.res <- read.csv("tpl0.5.2.res.csv", stringsAsFactors=FALSE)
tpl0.5.5.res <- read.csv("tpl0.5.5.res.csv", stringsAsFactors=FALSE)
tpl0.5.7.res <- read.csv("tpl0.5.7.res.csv", stringsAsFactors=FALSE)
Combine tpl.ncbi
tables:
tpl.res.comb <- cbind(tpl0.5.res[,c(1,2,3,7,9,11,13)],
tpl0.5.2.res[,c(7,9,11,13)], tpl0.5.5.res[,c(7,9,11,13)],
tpl0.5.7.res[,c(7,9,11,13)])
head(tpl.res.comb)
write.csv(tpl.res.comb, file = "tpl.res.comb.csv")
tpl.res.comb <- read.csv("tpl.res.comb.csv", stringsAsFactors=FALSE)
Status.correct
Genus.correct
Species.correct
tpl.res.comb <- read.csv("tpl.res.comb.csv", stringsAsFactors=FALSE)
str(tpl.res.comb)
names(tpl.res.comb)
tpl.res.comb$name.correct <- paste(tpl.res.comb$Genus.correct,
tpl.res.comb$Species.correct)
tpl.res.comb.2 <- tpl.res.comb
names(tpl.res.comb.2)
names(tpl.res.comb.2)[2] <- "Name_number"
names(tnrs.ncbi.certain)
tnrs.ncbi.certain.0.5 <- join(tnrs.ncbi.certain[match(index0.5,
tnrs.ncbi.certain$Name_number),],
tpl.res.comb.2[,c(3,23:26)], by =
"Name_number")
write.csv(tnrs.ncbi.certain.0.5, file = "tnrs.ncbi.certain.0.5.csv")
Fill in extra columns in tnrs.ncbi.certain.0.5
:
tnrs.ncbi.certain.0.5 <- read.csv("tnrs.ncbi.certain.0.5.csv", stringsAsFactors=FALSE)
str(tnrs.ncbi.certain.0.5)
names(tnrs.ncbi.certain.0.5)
str(tnrs.ncbi.certain.0.5$Genus.correct)
Fill Manual.matching
:
tnrs.ncbi.certain.0.5$Manual.matching[tnrs.ncbi.certain.0.5$Genus.correct != ""] <- "x"
Fill Status.correct
:
tnrs.ncbi.certain.0.5$Status.correct[tnrs.ncbi.certain.0.5$Status.correct == ""] <-
tnrs.ncbi.certain.0.5$Taxonomic_status[tnrs.ncbi.certain.0.5$Status.correct == ""]
Fill name.correct
:
tnrs.ncbi.certain.0.5$name.correct[tnrs.ncbi.certain.0.5$name.correct == " "] <-
tnrs.ncbi.certain.0.5$Name_matched[tnrs.ncbi.certain.0.5$name.correct == " "]
write.csv(tnrs.ncbi.certain.0.5, file = "tnrs.ncbi.certain.0.5.csv")
Combine tnrs.ncbi.certain.0.5
with the remaining tnrs.ncbi.certain
:
str(tnrs.ncbi.certain.0.5)
names(tnrs.ncbi.certain.0.5)
cert.0.5 <- tnrs.ncbi.certain[tnrs.ncbi.certain$Overall_score == 0.5,]
dim(cert.0.5)
str(cert.0.5)
cert.non.0.5 <- tnrs.ncbi.certain[tnrs.ncbi.certain$Overall_score != 0.5,]
dim(cert.non.0.5)
str(cert.non.0.5)
names(cert.non.0.5)
Add three more columns to cert.non.0.5
so that the columns to those in tnrs.ncbi.certain.0.5
:
cert.non.0.5$Manual.matching <- NA
cert.non.0.5$Status.correct <- NA
cert.non.0.5$name.correct <- NA
Combine the two tables:
tnrs.ncbi.certain.comb <- rbind(tnrs.ncbi.certain.0.5[,c(3:41,44)], cert.non.0.5[,c(2:41)])
dim(tnrs.ncbi.certain.comb)
write.csv(tnrs.ncbi.certain.comb, file = "tnrs.ncbi.certain.comb.csv")
Contains TNRS results based on the five sources: TPL, GCC, ILDIS, Tropicos and USDA.
load("tnrs.tpl.certain.Rdata")
dim(tnrs.tpl.certain)
Contains TNRS results based on the five sources Tropicos (ranked first) TPL, GCC, ILDIS & USDA
load("tnrs.trop.small.certain.Rdata")
dim(tnrs.trop.small.certain)
Combine the certain
data sets:
tnrs.tpl.all.trop.certain <- rbind(tnrs.tpl.certain, tnrs.trop.small.certain)
dim(tnrs.tpl.all.trop.certain)
... and add the four additional columns:
names(tnrs.tpl.all.trop.certain)
tnrs.tpl.all.trop.certain$Manual.matching <- NA
tnrs.tpl.all.trop.certain$Status.correct <- NA
tnrs.tpl.all.trop.certain$name.correct <- NA
tnrs.tpl.all.trop.certain$rank.correct <- NA
... for the 8,177 certain species:
names(tnrs.ncbi.certain.comb)
tnrs.ncbi.certain.comb$rank.correct <- NA
Combine the with the big list above:
tnrs.tpl.all.trop.certain.2 <- rbind(tnrs.tpl.all.trop.certain, tnrs.ncbi.certain.comb)
dim(tnrs.tpl.all.trop.certain.2)
names(tnrs.tpl.all.trop.certain.2)
Pick the list containing the uncertain
species:
names(ncbi.uncertain.comb)
Exclude columns JD
and corrected
ncbi.uncertain.comb.2 <- ncbi.uncertain.comb[,-c(5,6)]
names(ncbi.uncertain.comb.2)
ncbi.uncertain.comb.2$rank.correct <- NA
Combine them big list containing the certain
species with the uncertain
species
tnrs.tpl.all.trop.tnrs.certain <- rbind(tnrs.tpl.all.trop.certain.2, ncbi.uncertain.comb.2)
write.csv(tnrs.tpl.all.trop.tnrs.certain, file = "tnrs.tpl.all.trop.tnrs.certain.csv")
save(tnrs.tpl.all.trop.tnrs.certain, file = "tnrs.tpl.all.trop.tnrs.certain.Rdata")
Correct one more species name:
tnrs.tpl.all.trop.tnrs.certain$name.correct[which(tnrs.tpl.all.trop.tnrs.certain$name.correct
== "ABIES NORDMANNIANA")] <-
"Abies nordmanniana"
dim(tnrs.tpl.all.trop.tnrs.certain)
names(tnrs.tpl.all.trop.tnrs.certain)
tnrs.tpl.all.trop.tnrs.certain.filled <- tnrs.tpl.all.trop.tnrs.certain
tnrs.tpl.all.trop.tnrs.certain.filled$rank.correct <- as.character(
tnrs.tpl.all.trop.tnrs.certain.filled$rank.correct)
tnrs.tpl.all.trop.tnrs.certain.filled$rank.correct[
is.na(tnrs.tpl.all.trop.tnrs.certain.filled$
Manual.matching)] <-
tnrs.tpl.all.trop.tnrs.certain.filled$Name_matched_rank[
is.na(tnrs.tpl.all.trop.tnrs.certain.filled$
Manual.matching)]
tnrs.tpl.all.trop.tnrs.certain.filled$Status.correct[
is.na(tnrs.tpl.all.trop.tnrs.certain.filled$
Manual.matching)] <-
tnrs.tpl.all.trop.tnrs.certain.filled$Taxonomic_status[
is.na(tnrs.tpl.all.trop.tnrs.certain.filled$
Manual.matching)]
tnrs.tpl.all.trop.tnrs.certain.filled$name.correct[is.na(
tnrs.tpl.all.trop.tnrs.certain.filled$
Manual.matching)] <-
tnrs.tpl.all.trop.tnrs.certain.filled$Accepted_name[is.na(
tnrs.tpl.all.trop.tnrs.certain.filled$
Manual.matching)]
Fill name.correct
where status.correct
== No opinion
:
tnrs.tpl.all.trop.tnrs.certain.filled$name.correct[which(
tnrs.tpl.all.trop.tnrs.certain.filled$
Status.correct == "No opinion")] <-
tnrs.tpl.all.trop.tnrs.certain.filled$Name_matched[which(
tnrs.tpl.all.trop.tnrs.certain.filled$
Status.correct == "No opinion")]
write.csv(tnrs.tpl.all.trop.tnrs.certain.filled,
file = "tnrs.tpl.all.trop.tnrs.certain.filled.csv")
In tnrs.tpl.all.trop.tnrs.certain.filled
resolve some species manually on the TPL webpage.
tnrs.tpl.all.trop.tnrs.certain.filled <- read.csv("tnrs.tpl.all.trop.tnrs.certain.filled.csv",
stringsAsFactors=FALSE)
names(tnrs.tpl.all.trop.tnrs.certain.filled)
str(tnrs.tpl.all.trop.tnrs.certain.filled)
tnrs.tpl.all.trop.tnrs.certain.filled$name.short.correct <- as.character(
tnrs.tpl.all.trop.tnrs.certain.filled$name.short.correct)
Because some names consisted of > 2 words, the number of words in each name was counted:
wordcount <- sapply(gregexpr("\\S+", tnrs.tpl.all.trop.tnrs.certain.filled$name.correct),
length)
If a name has > 1 word, just keep the first two words:
tnrs.tpl.all.trop.tnrs.certain.filled$name.short.correct[wordcount>1] <-
word(tnrs.tpl.all.trop.tnrs.certain.filled$name.correct[wordcount>1], 1, 2)
Fill in one-word names name.short.correct
:
tnrs.tpl.all.trop.tnrs.certain.filled$name.short.correct[wordcount==1] <-
tnrs.tpl.all.trop.tnrs.certain.filled$name.correct[wordcount==1]
Select names where the second word is a x
(hybrids):
length(word(tnrs.tpl.all.trop.tnrs.certain.filled$name.short.correct[wordcount>1], 2)=="x")
write.csv(tnrs.tpl.all.trop.tnrs.certain.filled,
file = "tnrs.tpl.all.trop.tnrs.certain.filled.csv")
There are 7,900 species with more than 2 words and where 2nd word is "x". For those names in name.short.correct
(i) where the second word is a x
and that (ii) had more than two words, pick the first and third word:
index <- word(tnrs.tpl.all.trop.tnrs.certain.filled$name.correct[wordcount>2], 2) == "x"
wo.x <- paste(word(tnrs.tpl.all.trop.tnrs.certain.filled$name.correct[wordcount>2][index],
1), word(tnrs.tpl.all.trop.tnrs.certain.filled$name.correct[wordcount>2][index], 3))
tnrs.tpl.all.trop.tnrs.certain.filled$name.short.correct[wordcount>2][index] <- wo.x
tnrs.tpl.all.trop.tnrs.certain.filled <- read.csv("tnrs.tpl.all.trop.tnrs.certain.filled.csv",
stringsAsFactors=FALSE)
tnrs.tpl.all.trop.tnrs.certain.filled$name.short.correct[tnrs.tpl.all.trop.tnrs.certain.filled$
name.correct ==
"No suitable matches found."] <- NA
tnrs.tpl.all.trop.tnrs.certain.filled$rank.short.correct <-
tnrs.tpl.all.trop.tnrs.certain.filled$rank.correct
table(tnrs.tpl.all.trop.tnrs.certain.filled$rank.short.correct)
Assign rank
= species
to the shortened names of subspecies
, subvariety
, variety
and forma
.
tnrs.tpl.all.trop.tnrs.certain.filled$rank.short.correct[tnrs.tpl.all.trop.tnrs.certain.filled$
rank.correct == "infraspecies"] <-
"species"
tnrs.tpl.all.trop.tnrs.certain.filled$rank.short.correct[
tnrs.tpl.all.trop.tnrs.certain.filled$
rank.correct == "subspecies"] <- "species"
tnrs.tpl.all.trop.tnrs.certain.filled$rank.short.correct[
tnrs.tpl.all.trop.tnrs.certain.filled$
rank.correct == "subvariety"] <- "species"
tnrs.tpl.all.trop.tnrs.certain.filled$rank.short.correct[
tnrs.tpl.all.trop.tnrs.certain.filled$
rank.correct == "variety"] <- "species"
tnrs.tpl.all.trop.tnrs.certain.filled$rank.short.correct[
tnrs.tpl.all.trop.tnrs.certain.filled$
rank.correct == "forma"] <- "species"
Assign rank.short.correct
= family
to rank.correct
== unknown
since all of those names were at the family level.
tnrs.tpl.all.trop.tnrs.certain.filled$rank.short.correct[
tnrs.tpl.all.trop.tnrs.certain.filled$
rank.correct == "unknown"] <- "family"
write.csv(tnrs.tpl.all.trop.tnrs.certain.filled,
file = "tnrs.tpl.all.trop.tnrs.certain.filled.csv")
tnrs.tpl.all.trop.tnrs.certain.filled <- read.csv("../tnrs.tpl.all.trop.tnrs.certain.filled.csv",
stringsAsFactors=FALSE)
names(tnrs.tpl.all.trop.tnrs.certain.filled)
## [1] "X.3" "X.2"
## [3] "X.1" "X"
## [5] "Name_number" "Name_submitted"
## [7] "Overall_score" "Name_matched"
## [9] "Name_matched_rank" "Name_score"
## [11] "Name_matched_author" "Name_matched_url"
## [13] "Author_matched" "Author_score"
## [15] "Family_matched" "Family_score"
## [17] "Name_matched_accepted_family" "Genus_matched"
## [19] "Genus_score" "Specific_epithet_matched"
## [21] "Specific_epithet_score" "Infraspecific_rank"
## [23] "Infraspecific_epithet_matched" "Infraspecific_epithet_score"
## [25] "Infraspecific_rank_2" "Infraspecific_epithet_2_matched"
## [27] "Infraspecific_epithet_2_score" "Annotations"
## [29] "Unmatched_terms" "Taxonomic_status"
## [31] "Accepted_name" "Accepted_name_author"
## [33] "Accepted_name_rank" "Accepted_name_url"
## [35] "Accepted_name_species" "Accepted_name_family"
## [37] "Selected" "Source"
## [39] "Warnings" "Accepted_name_lsid"
## [41] "user_id" "Manual.matching"
## [43] "Status.correct" "name.correct"
## [45] "rank.correct" "family.correct"
## [47] "name.short.correct" "rank.short.correct"
Fill in family names in family.correct
for entries where the matched rank was family
and that were not matched manually:
tnrs.tpl.all.trop.tnrs.certain.filled$family.correct <- as.character(
tnrs.tpl.all.trop.tnrs.certain.filled$family.correct)
tnrs.tpl.all.trop.tnrs.certain.filled$family.correct[(
is.na(tnrs.tpl.all.trop.tnrs.certain.filled$Manual.matching) &
tnrs.tpl.all.trop.tnrs.certain.filled$rank.short.correct == "family")] <-
tnrs.tpl.all.trop.tnrs.certain.filled$name.correct[(
is.na(tnrs.tpl.all.trop.tnrs.certain.filled$Manual.matching) &
tnrs.tpl.all.trop.tnrs.certain.filled$rank.short.correct == "family")]
tnrs.tpl.all.trop.tnrs.certain.filled$family.correct[(
is.na(tnrs.tpl.all.trop.tnrs.certain.filled$Manual.matching))] <-
tnrs.tpl.all.trop.tnrs.certain.filled$Name_matched_accepted_family[(
is.na(tnrs.tpl.all.trop.tnrs.certain.filled$Manual.matching))]
write.csv(tnrs.tpl.all.trop.tnrs.certain.filled,
file = "tnrs.tpl.all.trop.tnrs.certain.filled.csv")
splot.try3.code <- read.csv("spec.list.TRY3.sPlot2.csv", stringsAsFactors=FALSE)
str(splot.try3.code)
backbone.splot.try3 <- read.csv("../tnrs.tpl.all.trop.tnrs.certain.filled.small.csv",
stringsAsFactors=FALSE)
str(backbone.splot.try3)
## 'data.frame': 122901 obs. of 30 variables:
## $ Name_number : int 1 2 3 4 5 6 7 8 9 10 ...
## $ Name_submitted : chr "Spermatophyta sp." "Spermatophyta sp." "Chlorophytum sp. [1269]" "Echinochloa sp." ...
## $ Overall_score : num 0 0 0.9 0.9 0.9 0.9 0.9 0 0.9 0 ...
## $ Name_matched : chr "No suitable matches found." "No suitable matches found." "Chlorophytum" "Echinochloa" ...
## $ Name_matched_rank : chr "" "" "genus" "genus" ...
## $ Name_score : num 0 0 1 1 1 1 1 0 1 0 ...
## $ Family_score : num 0 0 NA NA NA NA 1 0 1 0 ...
## $ Name_matched_accepted_family: chr "" "" "Asparagaceae" "Poaceae" ...
## $ Genus_matched : chr "" "" "Chlorophytum" "Echinochloa" ...
## $ Genus_score : num 0 0 1 1 1 1 NA 0 NA 0 ...
## $ Specific_epithet_matched : chr "" "" "" "" ...
## $ Specific_epithet_score : num 0 0 NA NA NA NA NA 0 NA 0 ...
## $ Unmatched_terms : chr "" "" "\"\"sp. [1269]" "\"\"sp." ...
## $ Taxonomic_status : chr "" "" "Accepted" "Accepted" ...
## $ Accepted_name : chr "" "" "Chlorophytum" "Echinochloa" ...
## $ Accepted_name_author : chr "" "" "" "" ...
## $ Accepted_name_rank : chr "" "" "genus" "genus" ...
## $ Accepted_name_url : chr "" "" "http://www.theplantlist.org/tpl1.1/search?q=Chlorophytum" "http://www.theplantlist.org/tpl1.1/search?q=Echinochloa" ...
## $ Accepted_name_species : chr "" "" "" "" ...
## $ Accepted_name_family : chr "" "" "Asparagaceae" "Poaceae" ...
## $ Selected : chr "true" "true" "true" "true" ...
## $ Source : chr "" "" "tpl" "tpl" ...
## $ Warnings : chr " " " " " " " " ...
## $ Manual.matching : chr NA NA NA NA ...
## $ Status.correct : chr "No suitable matches found." "No suitable matches found." "Accepted" "Accepted" ...
## $ name.correct : chr "No suitable matches found." "No suitable matches found." "Chlorophytum" "Echinochloa" ...
## $ rank.correct : chr "higher" "higher" "genus" "genus" ...
## $ family.correct : chr "" "" "Asparagaceae" "Poaceae" ...
## $ name.short.correct : chr NA NA "Chlorophytum" "Echinochloa" ...
## $ rank.short.correct : chr "higher" "higher" "genus" "genus" ...
backbone.splot.try3 <- join(splot.try3.code, backbone.splot.try3, by = "Name_number")
str(backbone.splot.try3)
table(backbone.splot.try3$Status.correct)
##
## Accepted No opinion
## 95485 4591
## No suitable matches found. Synonym
## 1692 20952
## Unresolved
## 181
For constistency, assign Unresolved
to status = Unresolved
:
backbone.splot.try3$Status.correct[backbone.splot.try3$Status.correct == "No opinion"] <-
"Unresolved"
write.csv(backbone.splot.try3, file = "backbone.splot.try3.csv")
save(backbone.splot.try3, file = "backbone.splot.try3.Rdata")
table(backbone.splot.try3$sPlot.TRY)
## < table of extent 0 >
table(backbone.splot.try3$Manual.matching)
##
## x
## 1675
table(backbone.splot.try3$Status.correct)
##
## Accepted No opinion
## 95485 4591
## No suitable matches found. Synonym
## 1692 20952
## Unresolved
## 181
length(unique(backbone.splot.try3$name.correct))-1
## [1] 90696
length(unique(backbone.splot.try3$family.correct))-1
## [1] 665
length(unique(backbone.splot.try3$name.short.correct))-1
## [1] 86528
table(backbone.splot.try3$rank.short.correct)
##
## family genus higher species
## 1880 13383 1211 105818
Get the species in the sPlot-July2015-version (sPlot_2015_07_29_species
) that do not match with the backbone in the April2015_Version (sPlot 2.0, sPlot_14_4_2015_species
) that was use in matching procedure above. Apply the cleaning procedure, similar to the one used for sPlot 2.0
.
miss.new <- read.csv("/home/oliver/Dokumente/PhD/PostPhD/IDiv/sDiv/sPlot/Analyses/Code/
Mismatches_29_07_2015_new.csv")
dim(miss.new)
## [1] 7701 1
There are 7,701 names in the sPlot version 29_07_2015
that were not in splot 2.0 (April 2015).
OriginalNames <- as.character(miss.new$x)
OriginalNames <- gsub('*', '', OriginalNames, fixed=TRUE)
OriginalNames <- gsub('cf. ', '', OriginalNames, fixed=TRUE)
OriginalNames <- gsub('Cf. ', '', OriginalNames, fixed=TRUE)
OriginalNames <- gsub('[', '', OriginalNames, fixed=TRUE)
OriginalNames <- gsub(']', '', OriginalNames, fixed=TRUE)
OriginalNames <- gsub(' x ', ' ', OriginalNames, fixed=TRUE)
OriginalNames <- gsub('×', '', OriginalNames, fixed=TRUE)
OriginalNames <- gsub('aff ', '', OriginalNames, fixed=TRUE)
OriginalNames <- gsub('(', '', OriginalNames, fixed=TRUE)
OriginalNames <- gsub(')', '', OriginalNames, fixed=TRUE)
OriginalNames <- gsub(' cf ', ' ', OriginalNames, fixed=TRUE)
OriginalNames <- gsub(' aff. ', ' ', OriginalNames, fixed=TRUE)
OriginalNames <- gsub('c‚e', 'ceae', OriginalNames, fixed=TRUE)
OriginalNames <- gsub(' ', ' ', OriginalNames, fixed=TRUE)
OriginalNames <- gsub(' ', ' ', OriginalNames, fixed=TRUE)
OriginalNames <- gsub(' ', ' ', OriginalNames, fixed=TRUE)
OriginalNames <- gsub('x-', '', OriginalNames, fixed=TRUE)
OriginalNames <- gsub('X-', '', OriginalNames, fixed=TRUE)
OriginalNames <- gsub('like ', '', OriginalNames, fixed=TRUE)
OriginalNames <- gsub(',', '', OriginalNames, fixed=TRUE)
library(stringr)
firstWordWithNumbers <- grepl('[0-9]', word(OriginalNames, 1))
numberOfWords <- sapply(gregexpr("\\W+", OriginalNames), length) + 1
OriginalNames[firstWordWithNumbers & numberOfWords > 1] <- sapply(OriginalNames[
firstWordWithNumbers & numberOfWords > 1], function(x) substr(x, start=regexpr(
pattern =' ',
text=x)+1,
stop=nchar(x)))
CleanedNames <- taxname.abbr(OriginalNames)
write.csv(CleanedNames, file = "CleanedNames.csv")
save(CleanedNames, file = "CleanedNames.Rdata")
On the TNRS application webpage, use all six sources (TPL
first, see procedure above). Subsequently, use Tropicos
first.
tnrs.tpl.new <- read.csv("/home/oliver/Downloads/missing_tpl.txt", sep = "\t",
stringsAsFactors = FALSE, skip = 0, head = T)[-1, ]
str(tnrs.tpl.new)
tnrs.tpl <- read.csv("tnrs.tpl.csv")
Assign index to first column:
tnrs.tpl$Name_number <- 1:length(tnrs.tpl$Name_number)
tnrs.tpl <- tnrs.tpl[,-1]
index.family <- tnrs.tpl[which(tnrs.tpl$Name_matched_rank == "family" &
(tnrs.tpl$Taxonomic_status == "Accepted" |
tnrs.tpl$Taxonomic_status == "Synonym") &
tnrs.tpl$Family_score > 0.88), 1]
length(index.family)
Repeat selection procedure for Name_matched_rank
==:
forma
genus
infraspecies
species
- etc.
Create respective index:
index.forma <- tnrs.tpl[which(tnrs.tpl$Name_matched_rank == "forma"), 1]
length(index.forma)
### Genus level
index.genus <- tnrs.tpl[which(tnrs.tpl$Name_matched_rank == "genus" &
tnrs.tpl$Taxonomic_status == "Accepted" &
tnrs.tpl$Genus_score > 0.83), 1]
length(index.genus)
index.infraspec <- tnrs.tpl[which(tnrs.tpl$Name_matched_rank == "infraspecies"), 1]
length(index.infraspec)
index.species <- tnrs.tpl[which(tnrs.tpl$Name_matched_rank == "species" &
(tnrs.tpl$Taxonomic_status == "Accepted" |
tnrs.tpl$Taxonomic_status == "Synonym") &
tnrs.tpl$Genus_score > 0.78 & tnrs.tpl$Name_score > 0.93),1]
length(index.species1)
index.species <- tnrs.tpl[which(tnrs.tpl$Name_matched_rank == "species" &
(tnrs.tpl$Taxonomic_status == "Accepted" |
tnrs.tpl$Taxonomic_status == "Synonym") &
tnrs.tpl$Specific_epithet_score > 0.78), 1]
length(index.species2)
index.species <- unique(c(index.species1, index.species2))
length(index.species)
index.subspec <- tnrs.tpl[which(tnrs.tpl$Name_matched_rank == "subspecies" &
(tnrs.tpl$Taxonomic_status == "Accepted" |
tnrs.tpl$Taxonomic_status == "Synonym")), 1]
length(index.subspec)
index.variety <- tnrs.tpl[which(tnrs.tpl$Name_matched_rank == "variety" &
(tnrs.tpl$Taxonomic_status == "Accepted" |
tnrs.tpl$Taxonomic_status == "Synonym")), 1]
length(index.variety)
index.spermatophyt <- tnrs.tpl[which(tnrs.tpl$Name_matched == "No suitable matches found." &
word(tnrs.tpl$Name_submitted, 1) == "Spermatophyta"), 1]
length(index.spermatophyt)
index.tpl <- c(index.family, index.forma, index.genus, index.species, index.subspec,
index.variety, index.spermatophyt)
length((index.tpl))
tnrs.tpl.certain <- tnrs.tpl[index.tpl,]
dim(tnrs.tpl.certain)
save(tnrs.tpl.certain, file = "tnrs.tpl.certain.Rdata")
write.csv(tnrs.tpl.certain, file = "tnrs.tpl.certain.csv")
tnrs.tpl.uncertain <- tnrs.tpl[tnrs.tpl$Name_number %in% index.tpl == F, ]
dim(tnrs.tpl.uncertain)
save(tnrs.tpl.uncertain, file = "tnrs.tpl.uncertain.Rdata")
write.csv(tnrs.tpl.uncertain, file = "tnrs.tpl.uncertain.csv")
write.csv(tnrs.tpl.uncertain[,2], file = "tnrs.tpl.uncertain.upload.csv")
tnrs.trop <- read.csv("/home/oliver/Downloads/tnrs.trop.txt", sep = "\t")
str(tnrs.trop)
str(tnrs.trop)
tnrs.trop$Name_number <- 1:length(tnrs.trop$Name_number)
tnrs.trop.small <- tnrs.trop[tnrs.trop$Name_number %in% index.tpl == F, ]
str(tnrs.trop.small)
save(tnrs.trop.small, file = "tnrs.trop.small.Rdata")
write.csv(tnrs.trop.small, file = "tnrs.trop.small.csv")
index.family <- tnrs.trop.small[which(tnrs.trop.small$Name_matched_rank == "family" &
(tnrs.trop.small$Taxonomic_status == "Accepted"|
tnrs.trop.small$Taxonomic_status == "No opinion"))
, 1]
length(index.family)
index.forma <- tnrs.trop.small[which(tnrs.trop.small$Name_matched_rank == "forma" &
(tnrs.trop.small$Taxonomic_status == "Accepted" |
tnrs.trop.small$Taxonomic_status == "Synonym")),
1]
length(index.forma)
index.genus <- tnrs.trop.small[which(tnrs.trop.small$Name_matched_rank == "genus" &
(tnrs.trop.small$Taxonomic_status == "Accepted" |
tnrs.trop.small$Taxonomic_status == "Synonym" |
tnrs.trop.small$Taxonomic_status == "No opinion") &
tnrs.trop.small$Genus_score > 0.83), 1]
length(index.genus)
index.species <- tnrs.trop.small[which(tnrs.trop.small$Name_matched_rank == "species" &
(tnrs.trop.small$Taxonomic_status == "Accepted" |
tnrs.trop.small$Taxonomic_status == "Synonym" |
tnrs.trop.small$Taxonomic_status == "No opinion") &
tnrs.trop.small$Specific_epithet_score > 0.77), 1]
length(index.species)
index.species2 <- tnrs.trop.small[which(tnrs.trop.small$Name_matched_rank == "species" &
(tnrs.trop.small$Taxonomic_status == "Accepted" |
tnrs.trop.small$Taxonomic_status == "Synonym") &
tnrs.trop.small$Genus_score > 0.88 &
tnrs.trop.small$Name_score > 0.49), 1]
length(index.species2)
index.species <- unique(c(index.species1, index.species2))
length(index.species)
index.subspec <- tnrs.trop.small[which(tnrs.trop.small$Name_matched_rank == "subspecies"),
1]
length(index.subspec)
index.subvariety <- tnrs.trop.small[which(tnrs.trop.small$Name_matched_rank == "subvariety"),
1]
length(index.subvariety)
index.variety <- tnrs.trop.small[which(tnrs.trop.small$Name_matched_rank == "variety" &
tnrs.trop.small$Taxonomic_status == "No opinion"),
1]
length(index.variety)
index.all <- c(index.family, index.genus, index.species, index.subspec, index.variety,
index.subvariety)
length((index.all))
tnrs.trop.small.certain <- tnrs.trop.small[tnrs.trop.small$Name_number %in%
index.all == T,]
dim(tnrs.trop.small.certain)
save(tnrs.trop.small.certain, file = "tnrs.trop.small.certain.Rdata")
write.csv(tnrs.trop.small.certain, file = "tnrs.trop.small.certain.csv")
tnrs.trop.small.uncertain <- tnrs.trop.small[tnrs.trop.small$Name_number %in%
index.all == F, ]
dim(tnrs.trop.small.uncertain)
save(tnrs.trop.small.uncertain, file = "tnrs.trop.small.uncertain.Rdata")
write.csv(tnrs.trop.small.uncertain, file = "tnrs.trop.small.uncertain.csv")
backbone.tpl.trop.certain <- rbind(tnrs.tpl.certain, tnrs.trop.small.certain)
str(backbone.tpl.trop.certain)
backbone.tpl.trop.certain.2 <- backbone.tpl.trop.certain[ ,c(1:6,12:17,25:35)]
colnames(backbone.tpl.trop.certain.2)
backbone.tpl.trop.certain.2$Manual.matching <- NA
backbone.tpl.trop.certain.2$Status.correct <- NA
backbone.tpl.trop.certain.2$name.correct <- NA
backbone.tpl.trop.certain.2$rank.correct <- NA
backbone.tpl.trop.certain.2$family.correct <- NA
backbone.tpl.trop.certain.2$name.short.correct <- NA
backbone.tpl.trop.certain.2$rank.short.correct <- NA
backbone.tpl.trop.certain.2$names.sPlot.TRY <- NA
backbone.tpl.trop.certain.2$names.corr.string <- NA
backbone.tpl.trop.certain.2$sPlot.TRY <- NA
backbone.tpl.trop.certain.3 <- backbone.tpl.trop.certain.2[,c(1,31:33,2:30)]
match(colnames(backbone.tpl.trop.certain.3), colnames(backbone.splot.try3))
identical(colnames(backbone.tpl.trop.certain.3), colnames(backbone.splot.try3)) # TRUE
backbone.tpl.trop.certain.3$Status.correct <- backbone.tpl.trop.certain.3$Taxonomic_status
index <- which(backbone.tpl.trop.certain.3$Name_matched == "No suitable matches found.")
backbone.tpl.trop.certain.3$Status.correct[index] <- "No suitable matches found."
Rename no.opinion
to unresolved
index <- which(backbone.tpl.trop.certain.3$Status.correct == "No opinion")
backbone.tpl.trop.certain.3$Status.correct[index] <- "Unresolved"
Use "Accepted name", if unresolved take "Name_matched")
backbone.tpl.trop.certain.3$name.correct <- backbone.tpl.trop.certain.3$Accepted_name
index <- which(backbone.tpl.trop.certain.3$Taxonomic_status != "Accepted" |
backbone.tpl.trop.certain.3$Taxonomic_status != "Synonym")
backbone.tpl.trop.certain.3$name.correct[index] <- backbone.tpl.trop.certain.3$
Name_matched[index]
index <- which(backbone.tpl.trop.certain.3$Name_matched == "No suitable matches found.")
backbone.tpl.trop.certain.3$name.correct[index] <- "No suitable matches found."
backbone.tpl.trop.certain.3$rank.correct <- backbone.tpl.trop.certain.3$Accepted_name_rank
index <- which(backbone.tpl.trop.certain.3$Taxonomic_status != "Accepted" |
backbone.tpl.trop.certain.3$Taxonomic_status != "Synonym")
backbone.tpl.trop.certain.3$rank.correct[index] <-
backbone.tpl.trop.certain.3$Name_matched_rank[index]
index <- which(backbone.tpl.trop.certain.3$Name_matched == "No suitable matches found.")
backbone.tpl.trop.certain.3$rank.correct[index] <- NA
backbone.tpl.trop.certain.3$family.correct <- backbone.tpl.trop.certain.3$
Accepted_name_family
index <- which(backbone.tpl.trop.certain.3$Taxonomic_status != "Accepted" |
backbone.tpl.trop.certain.3$Taxonomic_status != "Synonym")
backbone.tpl.trop.certain.3$family.correct[index] <-
backbone.tpl.trop.certain.3$Name_matched_accepted_family[index]
index <- which(backbone.tpl.trop.certain.3$Name_matched == "No suitable matches found.")
backbone.tpl.trop.certain.3$family.correct[index] <- NA
backbone.tpl.trop.certain.3$name.short.correct <- backbone.tpl.trop.certain.3$name.correct
index <- which(backbone.tpl.trop.certain.3$rank.correct == "subspecies" |
backbone.tpl.trop.certain.3$rank.correct == "variety" |
backbone.tpl.trop.certain.3$rank.correct == "forma"|
backbone.tpl.trop.certain.3$rank.correct == "subvariety" |
backbone.tpl.trop.certain.3$Name_matched_rank == "subspecies" |
backbone.tpl.trop.certain.3$Name_matched_rank == "variety")
library(stringr)
backbone.tpl.trop.certain.3$name.short.correct[index] <-
word(string = backbone.tpl.trop.certain.3$name.short.correct[index], start = 1, end = 2)
backbone.tpl.trop.certain.3$rank.short.correct <- backbone.tpl.trop.certain.3$rank.correct
index <- which(backbone.tpl.trop.certain.3$rank.correct == "subspecies" |
backbone.tpl.trop.certain.3$rank.correct == "variety" |
backbone.tpl.trop.certain.3$rank.correct == "forma"|
backbone.tpl.trop.certain.3$rank.correct == "subvariety")
backbone.tpl.trop.certain.3$rank.short.correct[index] <- "species"
tnrs.trop.small.uncertain.2 <- tnrs.trop.small.uncertain[ ,c(1:6,12:17,25:35)]
colnames(tnrs.trop.small.uncertain.2)
Add extra columns to match the old backbone
tnrs.trop.small.uncertain.2$Manual.matching <- NA
tnrs.trop.small.uncertain.2$Status.correct <- NA
tnrs.trop.small.uncertain.2$name.correct <- NA
tnrs.trop.small.uncertain.2$rank.correct <- NA
tnrs.trop.small.uncertain.2$family.correct <- NA
tnrs.trop.small.uncertain.2$name.short.correct <- NA
tnrs.trop.small.uncertain.2$rank.short.correct <- NA
tnrs.trop.small.uncertain.2$names.sPlot.TRY <- NA
tnrs.trop.small.uncertain.2$names.corr.string <- NA
tnrs.trop.small.uncertain.2$sPlot.TRY <- NA
tnrs.trop.small.uncertain.3 <- tnrs.trop.small.uncertain.2[,c(1,31:33,2:30)]
match(colnames(tnrs.trop.small.uncertain.3), colnames(backbone.splot.try3))
identical(colnames(tnrs.trop.small.uncertain.3), colnames(backbone.splot.try3)) # TRUE
tnrs.trop.small.uncertain.3[,c(28:29)] <- "No suitable matches found."
backbone.tpl.trop <- rbind(backbone.tpl.trop.certain.3, tnrs.trop.small.uncertain.3)
head(backbone.tpl.trop)
dim(backbone.tpl.trop)
write.csv(backbone.tpl.trop, file = "backbone.tpl.trop.csv")
backbone.tpl.trop <- read.csv("backbone.tpl.trop.csv")
Assing all entries to sPlot ("S")
backbone.tpl.trop$sPlot.TRY <- "S"
Assing all entries to sPlot-version 2.1 ("sPlot2b")
backbone.tpl.trop$Manual.matching <- "sPlot2b"
miss.clean.2 <- cbind(1:length(miss.clean[,1]), as.data.frame(miss.clean))
colnames(miss.clean.2)[1] <- "Name_number"
backbone.tpl.trop <- left_join(miss.clean.2, backbone.tpl.trop, by = "Name_number")
head(backbone.tpl.trop)
colnames(backbone.tpl.trop)
backbone.tpl.trop.2 <- backbone.tpl.trop[,-c(4:6)]
colnames(backbone.tpl.trop.2)[2:3] <- c("names.sPlot.TRY", "names.corr.string")
match(colnames(backbone.tpl.trop.2), colnames(backbone.splot.try3))
identical(colnames(backbone.tpl.trop.2), colnames(backbone.splot.try3))
write.csv(backbone.tpl.trop.2, file = "backbone.tpl.trop.2.csv")
save(backbone.tpl.trop.2, file = "backbone.tpl.trop.2.Rdata")
backbone.splot2b.try3 <- rbind(backbone.splot.try3, backbone.tpl.trop.2)
dim(backbone.splot2b.try3)
Check whether the new backbone matches the sPlot 2.1
species data:
str(splot.species)
length(unique(splot.species$Matched_concept))
which(unique(splot.species$Matched_concept) %in% backbone.splot2b.try3$names.sPlot.TRY == F)
backbone.splot2.1.try3 <- backbone.splot2b.try3
write.csv(backbone.splot2.1.try3, file = "backbone.splot2.1.try3.csv")
save(backbone.splot2.1.try3, file = "backbone.splot2.1.try3.Rdata")
Because sPlot, and to some extent TRY, contain a bunch of names belonging to non-vascular, those need to be tagged.
load("../backbone.splot2.1.try3.is.vascular.Rdata")
colnames(backbone.splot2.1.try3)
## [1] "Name_number" "names.sPlot.TRY"
## [3] "names.corr.string" "sPlot.TRY"
## [5] "Name_submitted" "Overall_score"
## [7] "Name_matched" "Name_matched_rank"
## [9] "Name_score" "Family_score"
## [11] "Name_matched_accepted_family" "Genus_matched"
## [13] "Genus_score" "Specific_epithet_matched"
## [15] "Specific_epithet_score" "Unmatched_terms"
## [17] "Taxonomic_status" "Accepted_name"
## [19] "Accepted_name_author" "Accepted_name_rank"
## [21] "Accepted_name_url" "Accepted_name_species"
## [23] "Accepted_name_family" "Selected"
## [25] "Source" "Warnings"
## [27] "Manual.matching" "Status.correct"
## [29] "name.correct" "rank.correct"
## [31] "family.correct" "name.short.correct"
## [33] "rank.short.correct" "is.vascular.species"
## [35] "sPlot2.1.TRY"
fam <- unique(backbone.splot2.1.try3$family.correct)
head(fam)
## [1] "" "Asparagaceae" "Poaceae" "Fabaceae"
## [5] "Polygalaceae" "Orchidaceae"
gbiffam <- sapply(fam[2:5], function(x) name_usage(name=x,
rank = 'FAMILY,', limit = 1)$data$phylum)
gbiffam[which(sapply(gbiffam, function(x) is.null(x)))] <- 'unknown'
fam$phylum <- unlist(gbiffam, use.names = TRUE)
table(fam$phylum)
write.csv(fam, file='family_affiliation_gbif.csv')
family_affiliation_gbif <- read.csv('../Florian_TaxStand/family_affiliation_gbif.csv')
table(family_affiliation_gbif$phylum)
##
## Anthocerotophyta Ascomycota Basidiomycota Bryophyta
## 1 35 15 57
## Charophyta Chlorophyta Cyanobacteria Glaucophyta
## 3 6 2 1
## Marchantiophyta Ochrophyta Rhodophyta Tracheophyta
## 45 17 8 474
## unknown
## 5
Add column "is.vascular.species"
and set all families that correspond to Tracheophyta
(vascular plants == TRUE
)
table(is.na(backbone.splot2.1.try3$is.vascular.species))
##
## FALSE TRUE
## 123589 7013
Select families that belong to Tracheophyta
:
fam.trach <- family_affiliation_gbif$Var1[family_affiliation_gbif$phylum == "Tracheophyta"]
dim(fam.trach)
ind.vasc <- backbone.splot2.1.try3$family.correct %in% fam.trach
backbone.splot2.1.try3$is.vascular.species <- ind.vasc
backbone.splot2.1.try3$is.vascular.species[backbone.splot2.1.try3$is.vascular.species ==
FALSE] <- NA
backbone.splot2.1.try3.is.vascular <- backbone.splot2.1.try3
To obtain proper stats for sPlot2.1
, kick out (or tag) the species that were only found in sPlot 2.0
but not in sPlot 2.1
:
splot.species.july2015 <- read.csv("/home/oliver/Dokumente/PhD/PostPhD/IDiv/sDiv/sPlot/
Analyses/Data/Species/sPlot/sPlot_2015_07_29/sPlot_2015_07_29_species.csv", sep = "\t")
gc()
splot.species.july2015.spec <- as.character(unique(splot.species.july2015$Matched.concept))
str(splot.species.july2015.spec)
write.csv(splot.species.july2015.spec, file = "splot.species.july2015.spec.csv")
There are 86,432 unique, uncorrected names in sPlot 2.1
. Check whether all of these names are in the new backbone?
load("backbone.splot2.1.try3.is.vascular.Rdata")
Export small backbone:
backbone.splot2.1.try3.small <- backbone.splot2.1.try3[,c(2,32)]
write.csv(backbone.splot2.1.try3.small, file = "backbone.splot2.1.try3.small.csv")
load("backbone.splot2.1.try3.Rdata")
ind <- (splot.species.july2015.spec %in% backbone.splot2.1.try3$names.sPlot.TRY)
splot.species.july2015.spec[ind==F]
table(ind)
But there are only 86,427 names here. Five species are missing! Why?
The following species are in sPlot2.1
(splot.species.july2015.spec
) but not in the backbone (backbone.splot2.1.try
):
- "Strauch like Oraniquelocarpus"
- "Buchenavia [GUNDINGA]"
- "[ms554 Triumfetta Ahorn]"
- "Dolichos holosericea"
- "[Aeschynomene latifolia]"
Actually, they are in the backbone but just spelled differently, e.g. Strauch like ""Oraniquelocarpus""
or [ms554 Triumfetta "Ahorn"]
. Probably those names got messed up, generate a vector of that 5 species that is consistent with the spelling used in the missing-species-list
and in the final backbone.
miss7701 <- read.csv("/home/oliver/Dokumente/PhD/PostPhD/IDiv/sDiv/sPlot/Analyses/Code/
Mismatches_29_07_2015_new.csv", stringsAsFactors = F)
vec5 <- miss7701[c(49, 3165, 5793, 5814, 5823), 1]
Add these five species to the sPlot 2.1
species list:
splot.species.july2015.spec.5 <- c(splot.species.july2015.spec, vec5)
In the big backbone, identify species that are in "S" and "ST" and that are in our sPlot 2.1
species list (should be 86,432).
ind <- (splot.species.july2015.spec.5 %in% backbone.splot2.1.try3$names.sPlot.TRY)
splot.species.july2015 <- splot.species.july2015.spec.5[ind]
ind <- (splot.species.july2015 %in% backbone.splot2.1.try3$names.sPlot.TRY)
table(ind)
Great, these are the species in sPlot 2.1
.
ind.splot2.1 <- which(backbone.splot2.1.try3$names.sPlot.TRY %in% splot.species.july2015)
There are 86,432 species in TRY, that are both only in TRY as well as in sPlot and TRY.
ind.try <- which(backbone.splot2.1.try3$sPlot.TRY=="T" | backbone.splot2.1.try3$sPlot.TRY=="ST")
60,273 species that are in TRY.
intersect_all <- function(a,b,...){
Reduce(intersect, list(a,b,...))
}
inter <- intersect_all(ind.splot2.1, ind.try)
24,844 names shared between sPlot and TRY.
Check whether the three numbers above are correct, and add new column sPlot2.1.TRY
to backbone, that tags the entries that belong to sPlot 2.1
and TRY 3.0
, respectively.
backbone.splot2.1.try3$ST <- NA
backbone.splot2.1.try3$ST[ind.splot2.1] <- "S"
backbone.splot2.1.try3$ST[ind.try] <- "T"
backbone.splot2.1.try3$ST[inter] <- "ST"
colnames(backbone.splot2.1.try3)[35] <- "sPlot2.1.TRY"
save(backbone.splot2.1.try3, file = "backbone.splot2.1.try3.is.vascular.Rdata")
load("../backbone.splot2.1.try3.is.vascular.Rdata")
How many entries in the backbone were only found in the old sPlot-version 2.0 (sPlot_14_4_2015
) but not in sPlot 2.1
sPlot_2015_07_19
?
table(!is.na(backbone.splot2.1.try3$sPlot2.1.TRY))
##
## FALSE TRUE
## 8741 121861
There are 8,741 entries that do not belong to sPlot 2.1
. In total 121,861 (unstandardized) name entries in sPlot 2.1
and TRY 3.0
combined. Index those species that were exclusiely found in the sPlot 2.0 but not in version 2.1, and remove them from the backbone (back2.1
) to update the match statistics.
ind2.1 <- !is.na(backbone.splot2.1.try3$sPlot2.1.TRY)
back2.1 <- backbone.splot2.1.try3[ind2.1, ]
Database affiliations (sPlot 2.1
and TRY 3.0
).
kable(t(table(back2.1$sPlot2.1.TRY)), caption = "Number of (standardized) name entries
unique to, or shared between TRY (S) and sPlot (T).")
S | ST | T |
---|---|---|
61588 | 24844 | 35429 |
60,273 of the total number of entries belong to TRY (incl. names that are only in TRY as well as in sPlot and TRY). 86,432 name entries belong to sPlot (incl. names that are only in TRY as well as in sPlot and TRY).
table(back2.1$Manual.matching)
##
## sPlot2b x
## 7694 1432
1,432 name entries were matched manually (see above).
Taxonomic ranks:
kable(t(table(back2.1$rank.short.correct)), caption = "Number of (standardized) name entries
per taxonomic rank.")
family | genus | higher | species |
---|---|---|---|
1745 | 12373 | 1020 | 105777 |
Taxonomic status:
kable(t(table(back2.1$Status.correct)), caption = "Number of (standardized) name entries
that correspond to `Accepted`, `Synonyms` or Unresolved species, respecively.")
Accepted | No suitable matches found. | Synonym | Unresolved |
---|---|---|---|
94068 | 1902 | 21028 | 4863 |
Total number of unique standardized taxon names and families:
length(unique(back2.1$name.short.correct))-1 # minus 1 for NA
## [1] 86760
length(unique(back2.1$family.correct))-2 # minus 2 for "" and NA
## [1] 663
Number of entries corresponding to vascular plant species:
table(back2.1$is.vascular.species)
##
## TRUE
## 115678
Number of duplicated entries after taxonomic standardization: Frequency of original (non-standardized) species names per resolved (non-standardized) name (excluding non-vascular and non-matched species).
df.count <- back2.1 %>%
dplyr::filter(is.vascular.species == TRUE, !is.na(name.short.correct)) %>%
dplyr::group_by(name.short.correct) %>%
dplyr::summarise(n = n()) %>%
dplyr::arrange(desc(n))
kable(df.count[c(1:3, 21:25, 101:110), ], , caption = "Number of unresolved, original name
enties per resolved name.")
Generate version of the backbone that only includes the unique resolved names in name.short.correct
, and for the non-unique names, the first rows of duplicated name:
back2.1.uni <- back2.1[!duplicated(back2.1$name.short.correct), ]
Remove the first entry, which is NA:
back2.1.uni <- back2.1.uni[-1, ]
length(unique(back2.1.uni$name.short.correct))
## [1] 86761
There are 86,760 unique taxon names the in backbone. Exclude the non-vascular plant and non-matching taxon names:
df.uni <- back2.1.uni %>%
dplyr::filter(is.vascular.species == TRUE, !is.na(name.short.correct))
df.uni
had two names less than df.count
, as they were accidentially tagged as non-vascular species names. Resolve that issue:
miss <- df.count$name.short.correct[(df.count$name.short.correct %in% df.uni$name.short.correct) == F]
which(df.count$name.short.correct %in% c("Arabis stellulata", "Coptidium pallasii"))
which(df.uni$name.short.correct %in% c("Arabis stellulata", "Coptidium pallasii"))
df.count[c(20319, 31478), ]
ind <- which(back2.1$name.short.correct %in% c("Arabis stellulata", "Coptidium pallasii"))
back2.1[ind, 31:34]
## family.correct name.short.correct rank.short.correct
## 8853 Brassicaceae Arabis stellulata species
## 8932 Brassicaceae Arabis stellulata species
## 30191 Ranunculaceae Coptidium pallasii species
## 96184 Ranunculaceae Coptidium pallasii species
## is.vascular.species
## 8853 TRUE
## 8932 TRUE
## 30191 TRUE
## 96184 TRUE
back2.1[ind[1], 31:34] <- back2.1[ind[2], 31:34]
back2.1[ind[3], 31:34] <- back2.1[ind[4], 31:34]
df.uni <- back2.1.uni %>%
dplyr::filter(is.vascular.species == TRUE, !is.na(name.short.correct))
Now, run the stats for unique resolved names (excluding non-vascular and non-matching taxa):
length(df.uni$name.short.correct)
## [1] 83677
There are 83,679 unique (non-vascular plant) taxon names:
kable(t(table(df.uni$sPlot2.1.TRY)), caption = "Number of (standardized) vascular plant
taxon names per unique to, and shared between TRY (S) and sPlot (T).")
S | ST | T |
---|---|---|
34105 | 20414 | 29158 |
table(df.uni$Manual.matching)
##
## sPlot2b x
## 1637 490
490 of those names were matched manually (see above).
Taxonomic ranks:
kable(t(table(df.uni$rank.short.correct)), caption = "Number of (standardized) name entries
per taxonomic rank.")
family | genus | higher | species |
---|---|---|---|
152 | 4343 | 13 | 79169 |
Taxonomic status:
kable(t(table(df.uni$Status.correct)), caption = "Number of (standardized) name entries that
correspond to `Accepted`, `Synonyms` or Unresolved species, respecively.")
Accepted | Synonym | Unresolved |
---|---|---|
69173 | 9998 | 4506 |
Total number of unique standardized taxon names and families:
length(unique(back2.1$name.short.correct))-1 # minus 1 for NA
## [1] 86760
length(unique(back2.1$family.correct))-2 # minus 2 for "" and NA
## [1] 663
Number of entries corresponding to vascular plant species:
table(back2.1$is.vascular.species)
##
## TRUE
## 115678
Number of duplicated entries after taxonomic standardization: Frequency of original (non-standardized) species names per resolved (non-standardized) name (excluding non-vascular and non-matched species).
df.count <- back2.1 %>%
dplyr::filter(is.vascular.species == TRUE, !is.na(name.short.correct)) %>%
dplyr::group_by(name.short.correct) %>%
dplyr::summarise(n = n()) %>%
dplyr::arrange(desc(n))
kable(df.count[c(1:3, 21:25, 101:110), ], , caption = "Number of unresolved, original
name enties per resolved name.")
name.short.correct | n |
---|---|
Poaceae | 254 |
Lauraceae | 175 |
Asteraceae | 146 |
Myrcia | 47 |
Taraxacum | 42 |
Pouteria | 41 |
Malpighiaceae | 39 |
Guarea | 37 |
Annonaceae | 17 |
Antimima | 17 |
Brosimum | 17 |
Centaurium erythraea | 17 |
Chrysophyllum | 17 |
Cinnamomum | 17 |
Elymus hispidus | 17 |
Euphorbia | 17 |
Lamium galeobdolon | 17 |
Mollinedia | 17 |
Generate version of the backbone that only includes the unique resolved names in name.short.correct
, and for the non-unique names, the first rows of duplicated name:
back2.1.uni <- back2.1[!duplicated(back2.1$name.short.correct), ]
Remove the first entry, which is NA:
back2.1.uni <- back2.1.uni[-1, ]
length(unique(back2.1.uni$name.short.correct))
There are 86,760 unique taxon names the in backbone. Exclude the non-vascular plant and non-matching taxon names:
df.uni <- back2.1.uni %>%
dplyr::filter(is.vascular.species == TRUE, !is.na(name.short.correct))
df.uni
had two names less than df.count
, as they were accidentially tagged as non-vascular species names. Correct that:
miss <- df.count$name.short.correct[(df.count$name.short.correct %in% df.uni$name.short.correct) == F]
which(df.count$name.short.correct %in% c("Arabis stellulata", "Coptidium pallasii"))
which(df.uni$name.short.correct %in% c("Arabis stellulata", "Coptidium pallasii"))
df.count[c(20319, 31478), ]
ind <- which(back2.1$name.short.correct %in% c("Arabis stellulata", "Coptidium pallasii"))
back2.1[ind, 31:34]
## family.correct name.short.correct rank.short.correct
## 8853 Brassicaceae Arabis stellulata species
## 8932 Brassicaceae Arabis stellulata species
## 30191 Ranunculaceae Coptidium pallasii species
## 96184 Ranunculaceae Coptidium pallasii species
## is.vascular.species
## 8853 TRUE
## 8932 TRUE
## 30191 TRUE
## 96184 TRUE
back2.1[ind[1], 31:34] <- back2.1[ind[2], 31:34]
back2.1[ind[3], 31:34] <- back2.1[ind[4], 31:34]
df.uni <- back2.1.uni %>%
dplyr::filter(is.vascular.species == TRUE, !is.na(name.short.correct))
Now, run the stats for unique resolved names (excluding non-vascular and non-matching taxa):
length(df.uni$name.short.correct)
There are 83,679 unique (non-vascular plant) taxon names:
Database affiliations (sPlot 2.1
and TRY 3.0
).
kable(t(table(df.uni$sPlot2.1.TRY)), caption = "Number of (standardized) vascular
plant taxon names per unique to, and shared between TRY (S) and sPlot (T).")
S | ST | T |
---|---|---|
34105 | 20414 | 29158 |
table(df.uni$Manual.matching)
##
## sPlot2b x
## 1637 490
1,432 of those names were matched manually (see above). Taxonomic ranks:
kable(t(table(df.uni$rank.short.correct)), caption = "Number of (standardized) vascular
plant taxon names per taxonomic rank.")
family | genus | higher | species |
---|---|---|---|
152 | 4343 | 13 | 79169 |
Taxonomic status:
kable(t(table(df.uni$Status.correct)), caption = "Number of (standardized) vascular plant
taxon names that correspond to `Accepted`, `Synonyms` or Unresolved species, respecively.")
Accepted | Synonym | Unresolved |
---|---|---|
69173 | 9998 | 4506 |
df.uni.splot <- df.uni %>%
dplyr::filter(is.vascular.species == TRUE, !is.na(name.short.correct), df.uni$sPlot2.1.TRY!= "T")
length((df.uni.splot$name.short.correct))
## [1] 54519
Database affiliations
kable(t(table(df.uni.splot$sPlot2.1.TRY)), caption = "Number of (standardized) vascular
plant taxon names per unique to sPlot (S), and shared between TRY and sPlot (ST).")
S | ST |
---|---|
34105 | 20414 |
table(df.uni.splot$Manual.matching)
##
## sPlot2b x
## 1637 266
266 uniquenames in sPlot were matched manually (see above).
Taxonomic ranks:
kable(t(table(df.uni.splot$rank.short.correct)), caption = "Number of (standardized)
vascular plant taxon names per taxonomic rank.")
family | genus | higher | species |
---|---|---|---|
133 | 2447 | 9 | 51930 |
Taxonomic status:
kable(t(table(df.uni.splot$Status.correct)), caption = "Number of (standardized) vascular
plant taxon names that correspond to `Accepted`, `Synonyms` or Unresolved species, respecively.")
Accepted | Synonym | Unresolved |
---|---|---|
46009 | 5967 | 2543 |
Number of families in sPlot:
length(unique(df.uni.splot$family.correct))
## [1] 439
Done!
sessionInfo()
## R version 3.4.1 (2017-06-30)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 14.04.5 LTS
##
## Matrix products: default
## BLAS: /usr/lib/openblas-base/libopenblas.so.0
## LAPACK: /usr/lib/lapack/liblapack.so.3.0
##
## locale:
## [1] LC_CTYPE=de_DE.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=de_DE.UTF-8 LC_COLLATE=de_DE.UTF-8
## [5] LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=de_DE.UTF-8
## [7] LC_PAPER=de_DE.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] bindrcpp_0.2 rmarkdown_1.6 rgbif_0.9.8
## [4] Taxonstand_2.0 pbapply_1.3-3 plyr_1.8.4
## [7] dplyr_0.7.2.9000 doParallel_1.0.10 iterators_1.0.8
## [10] foreach_1.4.3 vegdata_0.9 foreign_0.8-69
## [13] knitr_1.16 stringr_1.2.0
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.12 highr_0.6 compiler_3.4.1
## [4] bindr_0.1 tools_3.4.1 digest_0.6.12
## [7] evaluate_0.10.1 jsonlite_1.5 tibble_1.3.3
## [10] gtable_0.2.0 lattice_0.20-35 pkgconfig_2.0.1
## [13] rlang_0.1.1.9000 yaml_2.1.14 xml2_1.1.1
## [16] httr_1.2.1.9000 rgeos_0.3-23 rprojroot_1.2
## [19] grid_3.4.1 glue_1.1.1 data.table_1.10.4
## [22] geoaxe_0.1.0 R6_2.2.2 oai_0.2.2
## [25] XML_3.98-1.9 sp_1.2-5 whisker_0.3-2
## [28] ggplot2_2.2.1 magrittr_1.5 backports_1.1.0
## [31] htmltools_0.3.6 scales_0.4.1 codetools_0.2-15
## [34] assertthat_0.2.0 colorspace_1.3-2 stringi_1.1.5
## [37] lazyeval_0.2.0 munsell_0.4.3
Boyle, B., Hopkins, N., Lu, Z., Garay, J.A.R., Mozzherin, D., Rees, T., Matasci, N., Narro, M.L., Piel, W.H., Mckay, S.J. & others. (2013) The taxonomic name resolution service: An online tool for automated standardization of plant names. BMC Bioinformatics, 14, 16.
Chase, M. & Reveal, J. (2009) A phylogenetic classification of the land plants to accompany apgiii. Botanical Journal of the Linnean Society, 161, 122–127.
Federhen, S. (2010) The NCBI Handbook [Internet]. (eds J. McEntyre & J. Ostell) Available from: http://www.ncbi.nlm.nih.gov/guide/taxonomy/; National Center for Biotechnology Information, Bethesda, MD, USA, [Accessed: 25 Oct 2011].
Flann, C. (2009) Global Compositae Checklist. [Accessed 2 Apr 2013]. Available from: http://compositae.landcareresearch.co.nz/.
International legume database and information service. (2006) [Internet, Accessed 21 Aug 2015]. Available from: http://www.ildis.org/LegumeWeb.
iPlant Collaborative. (2015) The Taxonomic Name Resolution Service [Internet]. Version 4.0 [Accessed: 20 Sep 2015]. Available from: http://tnrs.iplantcollaborative.org/; National Center for Biotechnology Information.
Missouri Botanical Garden. (2013) Tropicos.org [Internet, Accessed 19 Dec 2014]. Available from: http://www.tropicos.org.
The Plant List. (2013) [Internet]. Version 1.1. [Accessed: 19 Aug 2015]. Available from: http://www.theplantlist.org/.
USDA, NRCS. (2012) The Plants Database [Internet]. [Accessed: 17 Jan 2015]. Available from: http://plants.usda.gov; National Plant Data Team, Greensboro, NC, USA.
[1] sPlot_14_4_2015_species
no longer exists, but will be used for documentation purposes here. This is the version of splot to generate the backbone for to match splot 2.0 to try 3.0. The following workflow describes the steps needed for generating a backbone for sPlot_14_4_2015
and TRY 3.0
. The backbone used in the third sPlot workshop contains the 7,701 additional (and/or different) species names in sPlot 2.1 (sPlot_2015_07_19_species
) that had to be standardized in a ad-hoc fashion prior to the workshop.
[2] This species list only contains 122,901 species. The final backbone contains 7,701 additional (and/or different) species from from the ad-hoc version sPlot_2015_07_19
.
[3] These were temporary files that were deleted after the name matching procedure.
[4] The full original tnrs.tpl
table, including all 123,000+ species, has been overwritten, and now instead only contains the 121,000+ species from sPlot 2.1 and TRY 3.0.
[5] Note, the single temporary result files from TNRS are no longer available.
[6] Temporary file that no longer exists.