-
Notifications
You must be signed in to change notification settings - Fork 0
/
topic-model-isec2022.Rmd
155 lines (131 loc) · 3.02 KB
/
topic-model-isec2022.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
---
title: "Topic modelling of ISEC2022 abstracts"
author: "Olivier Gimenez"
date: '2022-07-04'
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
# Motivation
This is a quick and dirty text mining analysis of the corpus of [ISEC 2022](https://www.isec2022.org/) abstracts (talks and posters) using topic modelling.
# Clean up data
```{r}
library(tidyverse)
theme_set(theme_light(base_size = 14))
```
Read in text file of all abstracts, and [split on empty line](https://stackoverflow.com/questions/38958597/r-split-text-on-empty-line):
```{r}
allabstracts <- readLines("txt/ISEC-2022-Abstract-Book.txt")
nvec <- length(allabstracts)
breaks <- which(grepl("^[[:space:]]*$", allabstracts))
nbreaks <- length(breaks)
if (breaks[nbreaks] < nvec) {
breaks <- c(breaks, nvec + 1L)
nbreaks <- nbreaks + 1L
}
if (nbreaks > 0L) {
allabstracts <- mapply(function(a,b) paste(allabstracts[a:b], collapse = " "),
c(1L, 1L + breaks[-nbreaks]),
breaks - 1L)
}
```
Fix encoding:
```{r}
Encoding(allabstracts) <- "latin1"
allabstracts <- iconv(allabstracts, "latin1", "UTF-8",sub='')
abstracts_tbl <- as_tibble(allabstracts)
```
Get rid of empty lines:
```{r}
dat <- abstracts_tbl %>%
rowwise() %>%
mutate(val = str_length(value)) %>%
filter(val > 1)
```
Add a column of id for each abstract:
```{r}
dat$id <- seq(1, nrow(dat))
```
Split columns into tokens:
```{r}
library(tidytext)
tidy_abstracts <- dat %>%
unnest_tokens(word, value)
```
Get rid of common stop words:
```{r}
data(stop_words)
tidy_abstracts <- tidy_abstracts %>%
anti_join(stop_words)
```
Create DocumentTermMatrix object:
```{r}
abstracts_dtm <- tidy_abstracts %>%
group_by(id, word) %>%
summarize(count = n()) %>%
mutate(document = id, term = word) %>%
cast_dtm(document, term, count)
```
# Counting
Count word occurrence:
```{r}
tidy_abstracts %>%
count(word, sort = TRUE)
```
Visualize:
```{r}
counts <- tidy_abstracts %>%
count(word, sort = TRUE) %>%
filter(n > 150) %>%
mutate(word = reorder(word, n)) %>%
ggplot(aes(n, word)) +
geom_col() +
labs(y = NULL)
counts
```
Save plot:
```{r}
ggsave(filename = "fig/words-isec2022.png",
plot = counts,
dpi = 600)
```
# Topic modeling
Estimate LDA model:
```{r}
library(topicmodels)
isec_lda <- LDA(x = abstracts_dtm,
k = 10,
control = list(seed = 1234))
```
Tidy up coefficients:
```{r}
library(tidytext)
topics <- tidy(isec_lda, matrix = "beta")
```
Get top terms:
```{r}
topterms <- topics %>%
group_by(topic) %>%
slice_max(beta, n = 10) %>%
ungroup() %>%
arrange(topic, -beta)
```
Visualize:
```{r}
topicplot <- topterms %>%
mutate(term = reorder_within(term, beta, topic)) %>%
ggplot(aes(beta, term, fill = factor(topic))) +
geom_col(show.legend = FALSE) +
facet_wrap(~ topic, scales = "free") +
scale_y_reordered()
topicplot
```
Save plot:
```{r}
ggsave(filename = "fig/topic-isec2022.png",
plot = topicplot,
dpi = 600,
width = 14,
height = 10)
```