-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearn_phi.py
125 lines (83 loc) · 2.72 KB
/
learn_phi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import numpy as np
import matplotlib.pyplot as plt
import os
import cv2 as cv
import torch
import torch.nn as nn
import torch.utils.data as data
import torch.optim as optim
import torch.nn.functional as F
# constants
M = np.arange(10, 400, 10)
N = 28*28
n_classes = 10
sigma = 10
# dictionary used for mapping the class labels
map = {
"zero":0,
"one":1,
"two":2,
"three":3,
"four":4,
"five":5,
"six":6,
"seven":7,
"eight":8,
"nine":9
}
def exp_proj(x, clusters):
Kc = torch.zeros(len(x), n_classes)
for i in range(len(x)):
diff = x[i] - clusters
Kc[i] = (- diff**2).mean(1).div(2 * sigma**2).exp()
return Kc.float()
# computing first set of cluster centers
path = "Dataset/MNIST/train"
imgs = os.listdir(path)
images = []
starts = []
for i in range(n_classes):
id = 0
for j in range(len(imgs)):
if(id == 0):
starts.append(len(images))
id = 1
if map[imgs[j].split("_")[0]] == i:
images.append(np.array(plt.imread(path + "/" + imgs[j])).flatten())
images = torch.tensor(np.array(images)).float()
y = torch.zeros(len(images))
for i in range(n_classes - 1):
y[starts[i]:starts[i + 1]] = i
y[starts[9]:len(images)] = 9
y = F.one_hot(y.to(torch.int64), num_classes=10).float()
train = data.TensorDataset(images, y)
train = data.DataLoader(train, batch_size=32, shuffle=True)
n_epochs = 5
def train_model(phi, optimizer, train, clusters, M):
phi.requires_grad_()
for epoch in range(n_epochs):
e_loss = 0
for _, x in enumerate(train):
x_, y = x[0], x[1]
loss = F.binary_cross_entropy(exp_proj((phi @ x_.T).T, clusters), y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
e_loss += loss.item()
print(epoch, "->", np.round(e_loss, 2))
# recomputing clusters after every epoch
with torch.no_grad():
clusters = torch.zeros((n_classes, M)).float()
for i in range(n_classes - 1):
clusters[i,:] = torch.mean((phi @ images[starts[i]:starts[i + 1]].T).T, axis=0)
clusters[9,:] = torch.mean((phi @ images[starts[9]:len(images)].T).T, axis=0)
for j in range(len(M)):
phi = torch.randn(M[j], N)
clusters = torch.zeros((n_classes, M[j])).float()
for i in range(n_classes - 1):
clusters[i,:] = torch.mean((phi @ images[starts[i]:starts[i + 1]].T).T, axis=0)
clusters[9,:] = torch.mean((phi @ images[starts[9]:len(images)].T).T, axis=0)
optimizer = optim.Adam([phi], lr=0.01)
train_model(phi, optimizer, train, clusters, M[j])
with torch.no_grad():
torch.save(phi, "models/learnt_phi/phi_" + str(M[j]) + ".pt")