-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsparse_angle_predictor.py
142 lines (99 loc) · 3.24 KB
/
sparse_angle_predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
import matplotlib.pyplot as plt
import cv2 as cv
import os
import torch
from dct import DCT
import torch
map = {
"zero":0,
"one":1,
"two":2,
"three":3,
"four":4,
"five":5,
"six":6,
"seven":7,
"eight":8,
"nine":9
}
def rotate_img(image, angle):
image_center = tuple(np.array(image.shape[1::-1]) / 2)
rot_mat = cv.getRotationMatrix2D(image_center, angle, 1.0)
result = cv.warpAffine(image, rot_mat, image.shape[1::-1], flags=cv.INTER_LINEAR)
return result
train_path = "Dataset/MNIST/train"
train_imgs = os.listdir(train_path)
path_train = "Dataset/MNIST/train"
imgs_train = os.listdir(path_train)
n_classes = 10
starts = []
images = []
for i in range(n_classes):
id = 0
for j in range(len(imgs_train)):
if(id == 0):
starts.append(len(images))
id = 1
if map[imgs_train[j].split("_")[0]] == i:
images.append(np.array(plt.imread(path_train + "/" + imgs_train[j])).flatten())
images = np.array(images)
test_path = "Dataset/MNIST/test"
test_imgs = os.listdir(test_path)
x = []
y = []
for i in range(len(test_imgs)):
x.append(rotate_img(plt.imread(test_path + "/" + test_imgs[i]), np.random.randint(0, 360)))
y.append(map[test_imgs[i].split("_")[0]])
# M = [10, 25, 50, 60, 100, 150, 200, 250, 300, 350, 400, 450, 500]
M = 200
N = 28 * 28
accuracy_rand = []
K = [100, 150, 200, 250, 300, 350, 400, 450, 500]
dct = DCT(28*28)
def get_sparse_rep(img, dct, K):
result_img = np.zeros(img.shape)
for i in range(len(img)):
img_coeffs = dct @ img[i]
res = sorted(range(len(img_coeffs)), key = lambda sub: img_coeffs[sub])[-K:]
sparse_coeffs = np.zeros(len(img_coeffs))
for j in range(len(res)):
sparse_coeffs[res[j]] = img_coeffs[res[j]]
result_img[i, :] = dct.T @ sparse_coeffs
return result_img
for l in range(len(K)):
phi = np.random.randn(M, N)
centers = np.zeros((n_classes, M))
for i in range(n_classes - 1):
centers[i,:] = np.mean((phi @ get_sparse_rep(images[starts[i]:starts[i + 1]], dct, K[l]).T).T, axis=0)
centers[9,:] = np.mean((phi @ get_sparse_rep(images[starts[9]:len(images)], dct, K[l]).T).T, axis=0)
thetas = np.arange(5, 360, 10)
preds = []
for i in range(len(x)):
pred = 0
min_dist = np.inf
min_angle = np.inf
for j in range(len(thetas)):
r_img = rotate_img(x[i], -thetas[j]).flatten()
meas = phi @ r_img
for k in range(len(centers)):
if(np.linalg.norm(meas - centers[k,:]) < min_dist):
min_dist = np.linalg.norm(meas - centers[k,:])
min_angle = thetas[j]
pred = k
preds.append(pred)
c = 0
for i in range(len(preds)):
if(preds[i] == y[i]):
c += 1
# print("classification accuracy ->", 100*c/len(preds))
accuracy_rand.append(100*c/len(preds))
print(l, "th iteration done")
print(accuracy_rand)
accuracy_rand = np.array(accuracy_rand)
plt.plot(K, accuracy_rand)
plt.xlabel("No. of meansurements")
plt.ylabel("Classification accuracy")
plt.title("Accuracy Vs No of measurements while imposing sparsity on image")
plt.legend()
plt.show()