-
Notifications
You must be signed in to change notification settings - Fork 9.5k
/
decoupled-solo-light_r50_fpn_3x_coco.py
50 lines (47 loc) · 1.68 KB
/
decoupled-solo-light_r50_fpn_3x_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
_base_ = './decoupled-solo_r50_fpn_3x_coco.py'
# model settings
model = dict(
mask_head=dict(
type='DecoupledSOLOLightHead',
num_classes=80,
in_channels=256,
stacked_convs=4,
feat_channels=256,
strides=[8, 8, 16, 32, 32],
scale_ranges=((1, 64), (32, 128), (64, 256), (128, 512), (256, 2048)),
pos_scale=0.2,
num_grids=[40, 36, 24, 16, 12],
cls_down_index=0,
loss_mask=dict(
type='DiceLoss', use_sigmoid=True, activate=False,
loss_weight=3.0),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)))
train_pipeline = [
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(
type='RandomChoiceResize',
scales=[(852, 512), (852, 480), (852, 448), (852, 416), (852, 384),
(852, 352)],
keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='PackDetInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
dict(type='Resize', scale=(852, 512), keep_ratio=True),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = val_dataloader