-
Notifications
You must be signed in to change notification settings - Fork 2
/
patched_conic.py
executable file
·784 lines (620 loc) · 25.9 KB
/
patched_conic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
#!/usr/bin/env python3
"""References:
* Arthur Gagg Filho, L., & da Silva Fernandes, S. 2016. Optimal round
trip lunar missions based on the patched-conic approximation.
Computational and Applied Mathematics, 35(3),
753–787. https://doi.org/10.1007/s40314-015-0247-y
"""
import numpy as np
np.seterr(divide='raise', invalid='raise')
#from scipy.optimize import newton
from scipy.linalg import norm
from orbit import Orbit
def rotate_2d(theta):
return np.array([[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]])
class PatchedConic(Orbit):
# Physical constants of earth--moon system
OMEGA = 2.649e-6 # r/s (mean)
R = 1737400.0 # m -- radius of moon
mu = 4.902800066163796e12 # m^3/s^2 moon gravitational constant
mu_earth = 3.986004354360959e14 # m^3/s^2 earth gravitational constant
r_soi = (mu / mu_earth)**0.4 * 384402000.0 # use mean distance for SOI calculation
def __init__(self, depart, arrive,
lam1 = 0.0,
rf = 1837000.0,
D = 384402000.0,
V = 2.649e-6 * 384402000.0):
"""Construct a planar patched conic approximation of an earth--moon
transfer.
Args:
depart earth-centered orbit at time of departure (post delta-v;
delta-v is assumed to be relative to a circular orbit of
the same radius)
arrive earth-centered orbit at SOI intercept
lam1 spacecraft phase angle at arrival (angle between vector to
sphere-of-influence intercept and moon--earth
vector)
rf final desired radius of lunar orbit
D lunar distance at SOI arrival (defaults to the mean)
V lunar velocity at SOI arrival (defaults to the mean)
"""
self.D = D
self.V = V
self.depart = depart
self.arrive = arrive
self.lam1 = lam1
self.rf = rf
# E: eccentric anomaly in the transit orbit; E0 is departure,
# E1 is SOI intercept
cE0 = depart.cos_E
cE1 = arrive.cos_E
E0 = np.arccos(cE0)
E1 = np.arccos(cE1)
sE0 = np.sin(E0)
sE1 = np.sin(E1)
e = arrive.e
# Get duration from departure from earth (time 0) to SOI
# intercept (time 1)
if arrive.a <= 0:
raise ValueError("expected elliptical trajectory")
tof = np.sqrt(arrive.a**3 / arrive.mu) * ((E1 - e * sE1) - (E0 - e * sE0))
# Get true anomalies at departure and arrival; we'll need
# these to get departure phase angle.
cnu0 = depart.cos_nu
cnu1 = arrive.cos_nu
nu0 = np.arccos(cnu0)
nu1 = np.arccos(cnu1)
# Get phase angle at arrival
sg1 = np.clip((self.r_soi / arrive.r) * np.sin(lam1), -1.0, 1.0) # Eq. 4
gam1 = np.arcsin(sg1) # gam1 is opposite lam1 in the arrival
# triangle (see Fig 1); phase angle at
# arrival
# gam0 is the phase angle at departure
# Note: This is approximate, since it depends on a fixed OMEGA
gam0 = nu1 - nu0 - gam1 - self.OMEGA * tof
# Eq. 9: velocity relative to moon when we reach SOI
phi1 = arrive.phi # computed by Orbit.at()
v1 = arrive.v
v2 = np.sqrt(v1**2 + V**2 - 2.0 * v1 * V * np.cos(phi1 - gam1))
# Compute miss angle of hyperbolic trajectory
seps2 = np.clip( (V * np.cos(lam1) - v1 * np.cos(lam1 + gam1 - phi1)) / -v2, -1.0, 1.0 )
eps2 = np.arcsin(seps2)
# Eq. 10: Get selenocentric flight path angle
# right-hand side:
tan_lam1_pm_phi2 = - v1 * np.sin(phi1 - gam1) / (V - v1 * np.cos(phi1 - gam1))
phi2 = np.arctan(tan_lam1_pm_phi2) - lam1 # flight path angle
# Parameters for Orbit class
self.r = self.r_soi
self.v = v2
self.phi = phi2
self.eps = eps2
# Additional parameters
self.Q = self.r * self.v**2 / self.mu
self.rf = rf
self.vf = np.sqrt(self.mu / self.rf)
self.gam0 = gam0
self.E0 = E0
self.nu0 = nu0
self.t0 = 0.0
self.gam1 = gam1
self.E1 = E1
self.nu1 = nu1
self.t1 = tof
# Calculate eccentricity and semimajor axis using Eqs 52--53.
Q2 = self.Q
self.ef = np.sqrt(1.0 + Q2 * (Q2 - 2.0) * np.cos(phi2)**2)
self.af = self.r / (2.0 - Q2)
# Position and velocity at perilune
self.rpl = self.af * (1.0 - self.ef)
self.vpl = np.sqrt((self.mu * (1.0 + self.ef)) / (self.af * (1.0 - self.ef)))
self.deltav1 = np.abs(self.depart.v - np.sqrt(self.mu_earth / self.depart.r))
self.deltav2 = self.vpl - self.vf
self.tof = tof
# Objectives
self.g = self.rf - self.rpl
self.f = self.deltav1 + self.deltav2
self.P = self.g**2
def plot(self, alpha = 1.0, ax = None, v_scale = 100000.0):
import matplotlib.pyplot as plt
from matplotlib.patches import Circle
from scipy.linalg import norm
if ax is None:
fig = plt.figure()
ax = fig.add_subplot(111)
# Plot moon, earth
moon = Circle( (x.D, 0.0), 1737400.0, fc='grey', ec='grey', alpha=0.5)
earth = Circle( (0.0, 0.0), 6378136.6, fc='blue', ec='blue', alpha=0.5)
ax.add_patch(moon)
ax.add_patch(earth)
# Plot orbit of moon
moon_orbit = Circle( (0.0, 0.0), self.D, fill=False, fc=None, alpha=0.5)
ax.add_patch(moon_orbit)
# Plot lunar SOI
soi = Circle( (self.D, 0.0), self.r_soi, fill=False, fc=None, alpha=0.5)
ax.add_patch(soi)
# Plot from earth to intercept point, intercept point to moon
# Find intercept point, call it r1
r1 = rotate_2d(self.gam1).dot(np.array([self.arrive.r, 0.0]))
ax.plot([0.0, r1[0], self.D],
[0.0, r1[1], 0.0], c='k', alpha=alpha)
# Plot moon-relative velocity
r2_moon = rotate_2d(-self.lam1).dot(np.array([-self.r_soi, 0.0]))
r2_earth = r2_moon + np.array([x.D, 0.0])
v2_earth = rotate_2d(self.eps).dot(r2_moon / norm(r2_moon)) * -self.v * v_scale
ax.plot([r2_earth[0], r2_earth[0] + v2_earth[0]],
[r2_earth[1], r2_earth[1] + v2_earth[1]], c='r', alpha=alpha)
# Plot earth-relative velocity
v1 = rotate_2d(np.pi/2 - self.arrive.phi).dot(r1 / norm(r1)) * self.arrive.v * v_scale
ax.plot([r1[0], r1[0] + v1[0]], [r1[1], r1[1] + v1[1]], c='g', alpha=alpha)
vm = np.array([0.0, -self.V]) * v_scale
ax.plot([r1[0] + v1[0], r1[0] + v1[0] + vm[0]], [r1[1] + v1[1], r1[1] + v1[1] + vm[1]], c='b', alpha=alpha)
return ax
class PatchedConicGradients(object):
def __init__(self, patched_conic):
# Setup some shorthand notations
v0 = patched_conic.depart.v
v1 = patched_conic.arrive.v
v2 = patched_conic.v
vM = patched_conic.V
Q2 = patched_conic.Q
phi0 = patched_conic.depart.phi
phi1 = patched_conic.arrive.phi
gam1 = patched_conic.gam1
phi2 = patched_conic.phi
cphi2 = np.cos(phi2)
sphi2 = np.sin(phi2)
cphi1 = np.cos(phi1)
sphi1 = np.sin(phi1)
tphi1 = np.tan(phi1)
cgam1 = np.cos(gam1)
cpmg1 = np.cos(phi1 - gam1)
spmg1 = np.sin(phi1 - gam1)
ef = patched_conic.ef
af = patched_conic.af
lam1 = patched_conic.lam1
mu = patched_conic.depart.mu
mu_moon = patched_conic.mu
r0 = patched_conic.depart.r
r1 = patched_conic.arrive.r
r2 = patched_conic.r
D = patched_conic.D
slam1 = np.sin(lam1)
clam1 = np.cos(lam1)
h = patched_conic.arrive.h
# Eq. 57--61
self.dv1_dv0 = v0 / v1
self.dphi1_dv0 = (v0 / v1 - v1 / v0) / (v1 * tphi1)
self.dv2_dv0 = ((v1 - vM * cpmg1) / v2) * self.dv1_dv0 + ((v1 * vM * spmg1) / v2) * self.dphi1_dv0
self.dphi2_dv1 = -vM * spmg1 / v2**2
self.dphi2_dphi1 = (v1**2 - v1 * vM * cpmg1) / v2**2
self.dphi2_dv0 = self.dphi2_dv1 * self.dv1_dv0 + self.dphi2_dphi1 * self.dphi1_dv0
# Eq. 63--65
self.def_dv2 = 2 * Q2 * (Q2 - 1.0) * cphi2**2 / (ef * v2)
self.def_dphi2 = -Q2 * (Q2 - 2.0) * cphi2 * sphi2 / ef
self.def_dv0 = self.def_dv2 * self.dv2_dv0 + self.def_dphi2 * self.dphi2_dv0
self.daf_dv0 = (2 * af**2 * v2 * self.dv2_dv0) / mu_moon
self.drpl_daf = 1.0 - ef # rpl = r_perilune
self.drpl_def = af
self.drpl_dv0 = self.drpl_daf * self.daf_dv0 - self.drpl_def * self.def_dv0
# Optimization state for Newton's method / restoration
self.x = np.array([lam1, v0])
self.dv1_dlam1 = -mu * D * r2 * slam1 / (v1 * r1**3) # Eq. 66
self.dphi1_dlam1 = h * D * r2 * slam1 / (v1 * r1**3 * sphi1) - h * D * r2 * mu * slam1 / (v1**3 * r1**4 * sphi1) # Eq. 67
self.dgam1_dlam1 = r2 * clam1 / (r1 * cgam1) - D * (r2 * slam1)**2 / (r1**3 * cgam1) # Eq. 68
self.dv2_dlam1 = ((v1 - vM * cpmg1) * self.dv1_dlam1
+ (v1 * vM * spmg1) * self.dphi1_dlam1
- (v1 * vM * spmg1) * self.dgam1_dlam1) / v2 # Eq. 69
self.dphi2_dgam1 = (vM * v1 * cpmg1 - v1**2) / v2**2 # Eq. 71
# Eq. 73: Note --- this is only one portion of this equation;
# we aren't using the rest right now.
self.dphi2_dlam1 = self.dphi2_dphi1 * self.dphi1_dlam1 + self.dphi2_dgam1 * self.dgam1_dlam1 + self.dphi2_dv1 * self.dv1_dlam1 - 1.0
self.dQ2_dlam1 = 2 * r2 * v2 * self.dv2_dlam1 / mu_moon # Eq. 74
self.daf_dQ2 = af / (2.0 - Q2) # Eq. 75
self.def_dQ2 = (Q2 - 1.0) * cphi2**2 / ef # Eq. 76
self.daf_dlam1 = self.daf_dQ2 * self.dQ2_dlam1 # Eq. 78
self.def_dlam1 = self.def_dQ2 * self.dQ2_dlam1 + self.def_dphi2 * self.dphi2_dlam1 # Eq. 79
self.drpl_dlam1 = (1.0 - ef) * self.daf_dlam1 - af * self.def_dlam1 # Eq. 80
self.dg_drpl = -1.0
self.dg_dlam1 = self.dg_drpl * self.drpl_dlam1
self.dg_dv0 = -self.drpl_dv0 # Eq. 88, but equation in paper should be negated
self.ddeltav2_dvpl = 1.0
self.dvpl_daf = 0.5 * np.sqrt((mu_moon * (1.0 + ef)) / (af**3 * (1.0 - ef))) # Eq. 89 (negated)
self.dvpl_def = -np.sqrt(mu_moon / ((1.0 + ef) * af * (1.0 - ef)**3)) # Eq. 90 (negated)
self.ddeltav2_def = self.ddeltav2_dvpl * self.dvpl_def
self.ddeltav2_daf = self.ddeltav2_dvpl * self.dvpl_daf
self.dvpl_dlam1 = self.dvpl_daf * self.daf_dlam1 + self.dvpl_def * self.def_dlam1
self.ddeltav2_dlam1 = self.ddeltav2_dvpl * self.dvpl_dlam1
self.df_dlam1 = self.ddeltav2_dlam1
self.ddeltav1_dv0 = 1.0
self.dvpl_dv0 = self.dvpl_def * self.def_dv0 + self.dvpl_daf * self.daf_dv0
self.ddeltav2_dv0 = self.ddeltav2_dvpl * self.dvpl_dv0
self.df_dv0 = self.ddeltav1_dv0 + self.ddeltav2_dv0
self.df_dx = np.array([[self.df_dlam1, self.df_dv0]]).T
self.dg_dx = np.array([[self.dg_dlam1, self.dg_dv0]]).T
# SGRA computations
dgdx = self.dg_dx # phi_x
dfdx = self.df_dx # f_x
P = 1.0 / dgdx.T.dot(dgdx)
self.lam = (-dgdx.T.dot(dfdx) / (dgdx.T.dot(dgdx)))[0]
# Compute derivative of merit function F
self.dF_dx = dfdx + dgdx.dot(self.lam)
# Compute stopping condition
self.Q = self.dF_dx.T.dot(self.dF_dx)[0,0]
#def dF_dx(self, lam):
# """Augmented function F derivative (for SGRA)"""
# return self.df_dx + self.dg_dx.dot(lam)
#def F(self, lam):
# """Augmented function for SCGRA."""
# return self.f + self.g * lam
#def Q(self, lam):
# """Stopping condition for SCGRA"""
# Fx = self.dF_dx(lam)
# return Fx.T.dot(Fx)[0,0]
def init_patched_conic(x,
rf = 1837400.0,
r0 = 6371000.0 + 185000.0,
phi0 = 0.0,
D = 384402000.0,
V = 2.649e-6 * 384402000.0):
"""Generic objective function. x is [lam1, v0]."""
lam1 = x[0]
v0 = x[1]
r_soi = PatchedConic.r_soi
r1 = np.sqrt(D**2 + r_soi**2 - 2.0 * D * r_soi * np.cos(lam1))
depart = Orbit(PatchedConic.mu_earth, r0, v0, phi0)
intercept = depart.at(r1, sign='+')
if np.isnan(intercept.v):
raise ValueError("expected radius is not reached")
elif depart.energy >= 0:
raise ValueError("expected elliptical orbit")
return PatchedConic(depart, intercept, lam1 = lam1, rf = rf)
def patched_conic_g(x, *args):
"""Objective function for achieving the final radius (also the constraint)."""
return init_patched_conic(x, *args).g
def patched_conic_nr_g(x, lam1, *args):
"""Input for newton-raphson iteration"""
return patched_conic_g(np.array([lam1, x]), *args)
def patched_conic_dg_dv0(x, lam1, *args):
pcx = init_patched_conic(np.array([lam1, x]), *args)
dx = PatchedConicGradients(pcx)
return dx.dg_dv0
def patched_conic_g_dg_dv0(x, lam1, *args):
pcx = init_patched_conic(np.array([lam1, x]), *args)
dx = PatchedConicGradients(pcx)
return pcx.g, dx.dg_dv0
def patched_conic_f(x, *args):
"""Objective function for minimizing total delta-v."""
return init_patched_conic(x, *args).f
def patched_conic_df_dg(x, *args):
pc = init_patched_conic(x, *args)
dpc = PatchedConicGradients(pc)
return (dpc.df_dv0, dpc.dg_dv0)
def dPsi_dalpha(alpha, x, *args):
lam = args[-2]
p = args[-1].reshape(2)
args = args[0:-2]
try:
pcy = init_patched_conic(x - p * alpha, *args)
dpcy = PatchedConicGradients(pcy)
return -dpcy.Q
except (ValueError, FloatingPointError):
return np.float('nan')
def Psi(alpha, x, *args):
lam = args[-2]
p = args[-1].reshape(2)
args = args[0:-2]
try:
pcy = init_patched_conic(x - p * alpha, *args)
#dpcy = PatchedConicGradients(pcy)
#lam = dpcy.lam
#print("alpha = {}\tlam = {}\tf = {}\tg = {}".format(alpha, lam, pcy.f, pcy.g))
#print("{}: {}".format(alpha, pcy.f + pcy.g * lam))
return pcy.f + pcy.g * lam
except (ValueError, FloatingPointError):
return np.float('nan')
def Psi_dPsi_dalpha(alpha, x, *args):
lam = args[-2]
p = args[-1].reshape(2)
args = args[0:-2]
try:
pcy = init_patched_conic(x - p * alpha, *args)
Psi = pcy.f + pcy.g * lam
dPsi_dalpha = dpcy.df_dx + dpcy.dg_dx * lam
return (Psi, dPsi_dalpha)
except (ValueError, FloatingPointError):
#print("{}: nan".format(alpha))
return (np.float('nan'), np.float('nan'))
def find_gradient(x, *args, conjugate = False,
dfdx = None,
dgdx = None,
dFdx2_prev = None,
p_prev = None,
alphatol = 1e-8,
alphabracket = [1e-11, 0.1],
maxiter = 100,
plot = True,
disp = False):
from scipy.optimize import minimize_scalar
# Compute penalty parameter
lam = (-dgdx.T.dot(dfdx) / (dgdx.T.dot(dgdx)))[0,0]
# Compute gradient of merit function. Use this as the direction
# for the alpha search.
dFdx = (dfdx + dgdx * lam).flatten()
if conjugate:
dFdx2 = dFdx.T.dot(dFdx)
if p_prev is None:
p_prev = np.zeros_like(x)
gamma = 0.0
else:
gamma = dFdx2 / dFdx2_prev
p = dFdx + p_prev * gamma
else:
p = dFdx
dFdx2 = dFdx.T.dot(dFdx)
# Find optimal alpha, where dPsi/dalpha is 0
#
# Use 'golden', because this appears to be the only method that
# tolerates nans.
alpha = newton(Psi,
alphabracket[0], (x, *args, lam, p),
tol = alphatol,
maxiter = maxiter,
disp = disp,
minimize = True)
if plot:
try:
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
da = (alpha - alphabracket[0]) / 50.0
aa = np.arange(0.0, alpha + da, da)
dpsi = np.zeros_like(aa)
psi = np.zeros_like(dpsi)
for ii in range(0, len(aa)):
dpsi[ii] = dPsi_dalpha(aa[ii], x, *args, lam, p)
psi[ii] = Psi(aa[ii], x, *args, lam, p)
ax.scatter(aa, psi)
#ax.scatter(aa, dpsi)
ax.axvline(alpha, c='r')
plt.show()
except ZeroDivisionError:
pass
return alpha, p, dFdx2
def find_restore_step(y, *args, maxiter=100, disp=True):
pcy = init_patched_conic(y, *args)
xt = y + 0.0
pcxt = pcy
dpcxt = PatchedConicGradients(pcxt)
k = 1.0
P_xt = float('inf')
jj = 0
while P_xt > pcy.P:
#print("find_restore_step: {}".format(k))
dgdx = dpcxt.dg_dx.flatten()
sigma = pcxt.g * (k / (dgdx.dot(dgdx)))
dy = dgdx * -sigma
y_test = xt + dy.flatten()
if disp:
print("{}: xt = {}, g = {}, dg/dx = {}, sigma = {}, dy = {}".format(jj, xt, pcxt.g, dgdx, sigma, dy))
try:
pcy_test = init_patched_conic(y, *args)
dpcy_test = PatchedConicGradients(pcy_test)
xt = y_test
pcxt = pcy_test
dpcxt = dpcy_test
P_xt = pcxt.P
except FloatingPointError:
#pcxt = init_patched_conic(xt, *args)
#dpcxt = PatchedConicGradients(pcxt)
pass
k *= 0.5
jj += 1
if jj == maxiter:
raise ValueError("exceeded max iterations (restore step search)")
return xt, pcxt, dpcxt
def restoration(y, *args, tol=1e-5, maxiter=100, sigma_maxiter=100, disp=False):
xt, pcxt, dpcxt = find_restore_step(y, *args, maxiter = sigma_maxiter, disp=disp)
try:
YS
except NameError:
YS = []
ii = 0
while pcxt.P > tol:
y = xt
YS.append(y)
xt, pcxt, dpcxt = find_restore_step(y, *args, maxiter = sigma_maxiter, disp = disp)
if norm(xt - y) < tol:
if disp: print("Skipping restoration (y == xt)")
return xt, pcxt, dpcxt
if ii >= maxiter:
raise ValueError("exceeded max iterations (restoration phase)")
ii += 1
return xt, pcxt, dpcxt
def newton_eval(fun_fprime, x, *args, step = 1e-11):
fdata = fun_fprime(x, *args)
if type(fdata) == tuple:
f, df_dx = fdata
else:
f = fdata
f1 = fun_fprime(x - step, *args)
f2 = fun_fprime(x + step, *args)
df_dx = (f2 - f1) / (2 * step)
return f, df_dx
def newton(fun_fprime, x, args,
tol = 5e-5,
step = 1e-6,
maxiter = 100,
beta0 = 1.0,
beta_factor = 0.5,
disp = False,
minimize = False):
"""Find a departure velocity which allows us to fulfill our perilune
constraint to within gtol. Use Newton's method, but must be
sensitive to overshooting resulting in nans.
"""
beta = beta0
f, df_dx = newton_eval(fun_fprime, x, *args)
for ii in range(0, maxiter):
if disp:
print("{}: x = {}, f = {}, dfdx = {}".format(ii, x, f, df_dx))
# Stop if we reach our desired constraint tolerance
if not minimize and np.abs(f) <= tol: # newton's method
break
try:
dx = -beta * (f / df_dx)
if disp: print("dx = {}".format(dx))
except FloatingPointError:
if minimize:
break
else:
raise ZeroDivisionError("zero derivative encountered")
# Keep track of previous values
fp = f
df_dxp = df_dx
xp = x
# Get next value
x = xp + dx
# If update fails due to nan, try again with a smaller beta.
try:
f, df_dx = newton_eval(fun_fprime, x, *args)
if minimize:
if np.abs(dx) < tol:
break
if np.abs(f) < np.abs(fp):
retry = False
else:
retry = True
except FloatingPointError:
retry = True
except ValueError:
retry = True
if retry:
f = fp
df_dx = df_dxp
x = xp
beta *= beta_factor
elif beta < beta0:
beta /= beta_factor
if beta > beta0:
beta = beta0
# beta = beta0 # reset beta
if ii >= maxiter-1:
raise ValueError("exceeded max iterations")
return x
def optimize_deltav(x, *args,
maxiter = 100,
gtol = 5e-5,
Ptol = 1e-5,
Qtol = 2e-15,
alphatol = 1e-12,
conjugate = False,
newton_maxiter = 100,
alpha_maxiter = 100,
gradient_maxiter = 100,
restore_maxiter = 100,
sigma_maxiter = 100,
disp = False,
plot_alpha = False):
# For this lambda1, find the v0 that meets our constraint (correct
# perilune radius) using Newton's method. This will be our
# starting point.
root_v0 = newton(patched_conic_g_dg_dv0,
x[1],
(x[0], *args),
tol = gtol,
maxiter = newton_maxiter,
disp = disp)
x[1] = root_v0
if disp:
print("x0 = {}".format(x))
try:
XS.append(x)
YS.append(x)
except NameError:
XS = []
YS = []
pcx = init_patched_conic(x, *args)
dpcx = PatchedConicGradients(pcx)
alpha = 0.03
# Get step (alpha), direction (p), and merit function gradient (dFdx)
alpha, p, dFdx2 = find_gradient(x, *args,
dfdx = dpcx.df_dx,
dgdx = dpcx.dg_dx,
conjugate = conjugate,
maxiter = alpha_maxiter,
alphabracket = [0.0, alpha],
alphatol = alphatol,
plot = plot_alpha,
disp = disp)
if disp:
print("alpha = {}, p = {}".format(alpha, p))
for ii in range(0, gradient_maxiter):
# Gradient phase:
dx = -alpha * p.flatten()
y = x + dx
if disp:
print("dx = {}".format(dx))
print("y = {}".format(y))
# Restoration phase
try:
xt, pcxt, dpcxt = restoration(y, *args, tol = Ptol, maxiter = restore_maxiter, sigma_maxiter = sigma_maxiter, disp = disp)
fail = False
except ValueError as e:
fail = True
if fail or pcxt.f >= pcx.f: # reduce stepsize and repeat
if disp:
print("Reducing alpha step size to {} ({})".format(alpha, fail))
if not fail:
print("\tQ = {}".format(dpcxt.Q))
alpha *= 0.5
else: # Proceed to next gradient phase (unless we're beneath Qtol)
if disp: print("post-restoration: alpha = {}\tf = {}\tg = {}\tQ = {}".format(alpha, pcxt.f, pcxt.g, dpcxt.Q))
pcx = pcxt
x = xt
dpcx = dpcxt
XS.append(x)
# Normally this should be the finishing condition, but it
# ain't working for some reason. That's fine. We'll assume
# we're done when alpha won't get any smaller. It seems to
# work.
if dpcx.Q <= Qtol: # If we get here, we're done
return x, pcx
if disp: print("\tQ = {}".format(dpcx.Q))
alpha, p, dFdx2 = find_gradient(x, *args,
dfdx = dpcx.df_dx,
dgdx = dpcx.dg_dx,
conjugate = conjugate,
maxiter = alpha_maxiter,
alphatol = alphatol,
plot = plot_alpha,
disp = disp)
print("Warning: exceeded max iterations (gradient phase)")
return x, pcx
if __name__ == '__main__':
D = 384402000.0
V = 2.649e-6 * D
leo = Orbit.circular(PatchedConic.mu_earth, 6378136.6 + 185000.0) # earth parking
XS = []
YS = []
optimize_deltav(np.array([49.9 * np.pi/180.0,
leo.v + 3200.0]),
1837400.0, leo.r, leo.phi, D, V,
conjugate = True)
YS = np.vstack(YS)
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_title("SGRA optimization progress")
ax.set_xlabel("\lambda_1 (deg)")
ax.set_ylabel("v_0 (m/s)")
ax.plot(np.array(YS[:,0]) * 180/np.pi, np.array(YS[:,1]), alpha=0.7)
ax.text(YS[0,0] * 180/np.pi, YS[0,1], s='initial')
ax.text(YS[-1,0] * 180/np.pi, YS[-1,1], s='final')
plt.show()
#opt = SGRA()
#alpha = 1.0
#for x in opt.optimize_v0(x, verbose=True):
# ax = x.plot(alpha = alpha, ax = ax)
# alpha *= 0.9
#plt.show()