Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

请问validation loss多少说明效果好 #15

Open
111678900 opened this issue Feb 28, 2024 · 14 comments
Open

请问validation loss多少说明效果好 #15

111678900 opened this issue Feb 28, 2024 · 14 comments

Comments

@111678900
Copy link

我只进行了训练,没有用已经有的模型,请问loss多少说明效果好?有点看不太懂

@LWHYC
Copy link
Collaborator

LWHYC commented Feb 28, 2024

我只进行了训练,没有用已经有的模型,请问loss多少说明效果好?有点看不太懂
Hi,

Based on our experience, a validation loss below 20 can yield decent results. However, we recommend training for a longer period as the model's ability to accurately predict or localize improves gradually over time.

@111678900
Copy link
Author

111678900 commented Feb 28, 2024 via email

@111678900
Copy link
Author

111678900 commented Feb 28, 2024 via email

@LWHYC
Copy link
Collaborator

LWHYC commented Feb 28, 2024

请问一开始是5000多是不是特别不正常😭

---原始邮件--- 发件人: "Wenhui @.> 发送时间: 2024年2月28日(周三) 中午11:36 收件人: @.>; 抄送: @.@.>; 主题: Re: [openmedlab/MedLSAM] 请问validation loss多少说明效果好 (Issue #15) 我只进行了训练,没有用已经有的模型,请问loss多少说明效果好?有点看不太懂 Hi, Based on our experience, a validation loss below 20 can yield decent results. However, we recommend training for a longer period as the model's ability to accurately predict or localize improves gradually over time. — Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.***>

一开始在train集上loss高是很正常的,但一般也会收敛的比较快

@LWHYC
Copy link
Collaborator

LWHYC commented Feb 28, 2024

请问还有就是我只进行了Train的部分,那样子需要进行原始归一化吗?这个模型对超声图像会适用吗 😭

---原始邮件--- 发件人: "Wenhui @.> 发送时间: 2024年2月28日(周三) 中午11:36 收件人: @.>; 抄送: @.@.>; 主题: Re: [openmedlab/MedLSAM] 请问validation loss多少说明效果好 (Issue #15) 我只进行了训练,没有用已经有的模型,请问loss多少说明效果好?有点看不太懂 Hi, Based on our experience, a validation loss below 20 can yield decent results. However, we recommend training for a longer period as the model's ability to accurately predict or localize improves gradually over time. — Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.***>

对所有数据灰度值归一化以及spacing resample是需要的

@111678900
Copy link
Author

111678900 commented Feb 28, 2024 via email

@LWHYC
Copy link
Collaborator

LWHYC commented Feb 28, 2024

请问space ing resample是什么意思呀,我好像没找到这部分代码

---原始邮件--- 发件人: "Wenhui @.> 发送时间: 2024年2月28日(周三) 中午11:43 收件人: @.>; 抄送: @.@.>; 主题: Re: [openmedlab/MedLSAM] 请问validation loss多少说明效果好 (Issue #15) 请问还有就是我只进行了Train的部分,那样子需要进行原始归一化吗?这个模型对超声图像会适用吗 😭 … ---原始邮件--- 发件人: "Wenhui @.> 发送时间: 2024年2月28日(周三) 中午11:36 收件人: @.>; 抄送: @.@.>; 主题: Re: [openmedlab/MedLSAM] 请问validation loss多少说明效果好 (Issue #15) 我只进行了训练,没有用已经有的模型,请问loss多少说明效果好?有点看不太懂 Hi, Based on our experience, a validation loss below 20 can yield decent results. However, we recommend training for a longer period as the model's ability to accurately predict or localize improves gradually over time. — Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.> 对所有数据灰度值归一化以及spacing resample是需要的 — Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.>

请看Training Data preparation中的 train/dataset_preprocess.py

@111678900
Copy link
Author

111678900 commented Feb 28, 2024 via email

@LWHYC
Copy link
Collaborator

LWHYC commented Feb 28, 2024

哦哦感谢我用了这部分代码处理,是不是您的意思是要修改一下这部分代码

---原始邮件--- 发件人: "Wenhui @.> 发送时间: 2024年2月28日(周三) 中午11:46 收件人: @.>; 抄送: @.@.>; 主题: Re: [openmedlab/MedLSAM] 请问validation loss多少说明效果好 (Issue #15) 请问space ing resample是什么意思呀,我好像没找到这部分代码 … ---原始邮件--- 发件人: "Wenhui @.> 发送时间: 2024年2月28日(周三) 中午11:43 收件人: @.>; 抄送: @.@.>; 主题: Re: [openmedlab/MedLSAM] 请问validation loss多少说明效果好 (Issue #15) 请问还有就是我只进行了Train的部分,那样子需要进行原始归一化吗?这个模型对超声图像会适用吗 😭 … ---原始邮件--- 发件人: "Wenhui @.> 发送时间: 2024年2月28日(周三) 中午11:36 收件人: @.>; 抄送: @.@.>; 主题: Re: [openmedlab/MedLSAM] 请问validation loss多少说明效果好 (Issue #15) 我只进行了训练,没有用已经有的模型,请问loss多少说明效果好?有点看不太懂 Hi, Based on our experience, a validation loss below 20 can yield decent results. However, we recommend training for a longer period as the model's ability to accurately predict or localize improves gradually over time. — Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.> 对所有数据灰度值归一化以及spacing resample是需要的 — Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.> 请看Training Data preparation中的 train/dataset_preprocess.py — Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.***>

正常来说经过这部分代码处理后的数据就可以直接使用了,不需要额外操作。

@111678900
Copy link
Author

111678900 commented Feb 28, 2024 via email

@111678900
Copy link
Author

111678900 commented Feb 28, 2024 via email

@LWHYC
Copy link
Collaborator

LWHYC commented Feb 28, 2024

其实还想问一下超声图像用这个的话效果是不是会很不好

---原始邮件--- 发件人: "Wenhui @.> 发送时间: 2024年2月28日(周三) 中午11:48 收件人: @.>; 抄送: @.@.>; 主题: Re: [openmedlab/MedLSAM] 请问validation loss多少说明效果好 (Issue #15) 哦哦感谢我用了这部分代码处理,是不是您的意思是要修改一下这部分代码 … ---原始邮件--- 发件人: "Wenhui @.> 发送时间: 2024年2月28日(周三) 中午11:46 收件人: @.>; 抄送: @.@.>; 主题: Re: [openmedlab/MedLSAM] 请问validation loss多少说明效果好 (Issue #15) 请问space ing resample是什么意思呀,我好像没找到这部分代码 … ---原始邮件--- 发件人: "Wenhui @.> 发送时间: 2024年2月28日(周三) 中午11:43 收件人: @.>; 抄送: @.@.>; 主题: Re: [openmedlab/MedLSAM] 请问validation loss多少说明效果好 (Issue #15) 请问还有就是我只进行了Train的部分,那样子需要进行原始归一化吗?这个模型对超声图像会适用吗 😭 … ---原始邮件--- 发件人: "Wenhui @.> 发送时间: 2024年2月28日(周三) 中午11:36 收件人: @.>; 抄送: @.@.>; 主题: Re: [openmedlab/MedLSAM] 请问validation loss多少说明效果好 (Issue #15) 我只进行了训练,没有用已经有的模型,请问loss多少说明效果好?有点看不太懂 Hi, Based on our experience, a validation loss below 20 can yield decent results. However, we recommend training for a longer period as the model's ability to accurately predict or localize improves gradually over time. — Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.> 对所有数据灰度值归一化以及spacing resample是需要的 — Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.> 请看Training Data preparation中的 train/dataset_preprocess.py — Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.> 正常来说经过这部分代码处理后的数据就可以直接使用了,不需要额外操作。 — Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.>

对超声图像可能不太适用,因为这个算法建立在不同图像共享一个隐藏坐标系的前提,超声图像的坐标系并不固定。

@111678900
Copy link
Author

111678900 commented Feb 28, 2024 via email

@LWHYC
Copy link
Collaborator

LWHYC commented Feb 28, 2024

好的好的真的非常感谢您,请问您有超声分割相关的代码吗   (ಥ㉨ಥ)   

---原始邮件--- 发件人: "Wenhui @.> 发送时间: 2024年2月28日(周三) 中午11:51 收件人: @.>; 抄送: @.@.>; 主题: Re: [openmedlab/MedLSAM] 请问validation loss多少说明效果好 (Issue #15) 其实还想问一下超声图像用这个的话效果是不是会很不好 … ---原始邮件--- 发件人: "Wenhui @.> 发送时间: 2024年2月28日(周三) 中午11:48 收件人: @.>; 抄送: @.@.>; 主题: Re: [openmedlab/MedLSAM] 请问validation loss多少说明效果好 (Issue #15) 哦哦感谢我用了这部分代码处理,是不是您的意思是要修改一下这部分代码 … ---原始邮件--- 发件人: "Wenhui @.> 发送时间: 2024年2月28日(周三) 中午11:46 收件人: @.>; 抄送: @.@.>; 主题: Re: [openmedlab/MedLSAM] 请问validation loss多少说明效果好 (Issue #15) 请问space ing resample是什么意思呀,我好像没找到这部分代码 … ---原始邮件--- 发件人: "Wenhui @.> 发送时间: 2024年2月28日(周三) 中午11:43 收件人: @.>; 抄送: @.@.>; 主题: Re: [openmedlab/MedLSAM] 请问validation loss多少说明效果好 (Issue #15) 请问还有就是我只进行了Train的部分,那样子需要进行原始归一化吗?这个模型对超声图像会适用吗 😭 … ---原始邮件--- 发件人: "Wenhui @.> 发送时间: 2024年2月28日(周三) 中午11:36 收件人: @.>; 抄送: @.@.>; 主题: Re: [openmedlab/MedLSAM] 请问validation loss多少说明效果好 (Issue #15) 我只进行了训练,没有用已经有的模型,请问loss多少说明效果好?有点看不太懂 Hi, Based on our experience, a validation loss below 20 can yield decent results. However, we recommend training for a longer period as the model's ability to accurately predict or localize improves gradually over time. — Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.> 对所有数据灰度值归一化以及spacing resample是需要的 — Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.> 请看Training Data preparation中的 train/dataset_preprocess.py — Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.> 正常来说经过这部分代码处理后的数据就可以直接使用了,不需要额外操作。 — Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.> 对超声图像可能不太适用,因为这个算法建立在不同图像共享一个隐藏坐标系的前提,超声图像的坐标系并不固定。 — Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you authored the thread.Message ID: @.***>

不好意思我并没有做过超声相关的任务,或许可以看看我们组超声大模型的项目:https://github.com/openmedlab/USFM

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants