-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathj.py
263 lines (223 loc) · 8.78 KB
/
j.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import camelot
import pandas as pd
import matplotlib.pyplot as plt # https://pandas.pydata.org/docs/user_guide/visualization.html#basic-plotting-plot
from matplotlib.ticker import FuncFormatter
# For prettier plots: https://pandas.pydata.org/community/ecosystem.html
import seaborn as sns # https://seaborn.pydata.org
import sqlite3
pd.options.display.max_columns = None
pd.options.display.max_rows = None
pd.options.display.width = 1000
pages = [
"13,14,15,16,17", # First table
"18,19,20,21,22,23", # Second table
"24,25,26,27", # Third table
# "28,29,30,31", # Fourth table
]
pages = ','.join(pages)
# Read tables from a PDF file
tables = camelot.read_pdf("appendix_f.pdf", pages="14", split_text=True)
print("read_pdf() is done")
i = 0
for table in tables:
# Kick out JSON files so we can inspect them to see how disappointed (or not) we are in Camelot.
table.to_json("debug/" + str(i) + ".json")
i += 1
# Convert each table into a DataFrame
dataframes = [table.df for table in tables]
print("conversion of all tables to dataframes is done")
# Function to count the number of elements in a cell
def count_elements(cell):
if pd.isna(cell):
return 0
return len(cell.split('\n')) # There's no such argument allowed here: expand=True))
# Drop columns that only have one element after we split()
def drop_columns_that_dont_split(df):
print("Welcome to drop_columns_that_dont_split()")
# Inspect the DataFrame and drop columns with only one element in each cell after split
columns_to_drop = []
for column in df.columns:
# unique_counts = df[column].apply(lambda cell: count_elements(cell)).nunique()
count = df[column].apply(lambda cell: count_elements(cell)).iloc[0]
# print("=========")
# print(count)
# print("=========")
# count = count_elements(column)
# print("For column", column, "count elements is", count)
if count == 1:
# if unique_counts == 1:
columns_to_drop.append(column)
# Drop the columns
df_cleaned = df.drop(columns=columns_to_drop)
# Rename columns to sequential integers so the now-missing columns don't leave gaps in the column IDs
df_cleaned.columns = range(df_cleaned.shape[1])
# print(df_cleaned)
return df_cleaned
# Function to split DataFrame
def split(df):
# Attempt 5: Nope, this explodes
# Split each cell by '\n'
# df = df.apply(lambda x: x.str.split('\n'))
# Explode the DataFrame
# df_expanded = df.apply(lambda x: x.explode()).reset_index(drop=True)
# ValueError: cannot reindex on an axis with duplicate labels
# Attempt 4: Nope, this explodes
# Split each cell by '\n'
# for column in df.columns:
# df[column] = df[column].str.split('\n')
# Explode each column individually and concatenate the results
# df_expanded = pd.concat([df[col].explode() for col in df.columns], axis=1)
# Reset the index to avoid duplicate labels
# df_expanded = df_expanded.reset_index(drop=True)
# ValueError: cannot reindex on an axis with duplicate labels
# Attempt 3: Nope, this explodes
# Split each cell by '\n'
# -----------------
# Jay's helpful debugging:
# for column in df.columns:
# df[column] = df[column].str.split('\n', expand=True)
# print("------- debug 2 for column", column, "----------")
# print(debug.iloc[0])
# val = df.iat[0, column] # Leave Pandas, get back to Python str
# print(repr(val)) # print \n, not newline. So I can see 'em
# print(type(val)) # Python str
# print("--------------------------")
# debug = df[column].str.split('\n', expand=True)
# print(debug)
# print("-------- end -------------\n")
# -----------------
# Explode the DataFrame
# df_expanded = df.apply(pd.Series.explode)
# Reset the index
# df_expanded = df_expanded.reset_index(drop=True)
# ValueError: cannot reindex on an axis with duplicate labels
# Attempt 2: Nope, this explodes
# Split each cell by '\n' and create a new DataFrame where each row is a value from the split
# df_expanded = df.apply(lambda x: x.str.split('\n')).apply(pd.Series.explode).reset_index(drop=True)
# ValueError: cannot reindex on an axis with duplicate labels
# Attempt 1: Nope, this explodes:
# Split each cell by '\n' and create a new DataFrame where each row is a value from the split
# Can't expand=True here either:
# TypeError: DataFrame.explode() missing 1 required positional argument: 'column'
# df = df.apply(lambda x: x.str.split('\n').explode()).reset_index(drop=True)
df = df.apply(lambda x: x.str.split('\n'))
# ValueError: cannot reindex on an axis with duplicate labels
return df
# Function to split DataFrame
def explode(df):
df = df.apply(lambda x: x.explode()).reset_index(drop=True)
# ValueError: cannot reindex on an axis with duplicate labels
return df
# Apply the function to the DataFrame
# df_expanded = split_and_expand(df)
data = {
"Column1": ["value1\nvalue2\nvalue3", "value4\nvalue5", "value6"],
"Column2": ["a\nb\nc", "d\ne", "f"]
}
df = pd.DataFrame(data)
# df_expanded = split_and_expand(df)
# print(df_expanded)
def clean_and_concat_dataframes(begin, end):
df = pd.DataFrame({})
i = begin
while i < end:
this_df = dataframes[i]
print("Going to try to concat in dataframe #", i, ":")
print("-------------------")
print(this_df)
print("-------------------")
this_df = this_df.drop([0]) # Drop header row. PDF is a mess.
this_df = drop_columns_that_dont_split(this_df)
this_df = split_and_expand(this_df)
df = pd.concat([df, this_df])
i += 1
return df
# The first actual dataframe we want to extract is 4..8 from the messy set of all dataframes extracted above
# lol, can't even do this, because it's inconsistent:
# df1 = clean_and_concat_dataframes(4, 8)
df1 = dataframes[0]
df1 = df1.drop([0]) # Drop header row. PDF is a mess.
df1 = drop_columns_that_dont_split(df1)
df1 = split(df1)
df1 = explode(df1)
# Success: we now have PDF page 13
# Where is PDF page 14??
this_df = dataframes[1]
this_df = this_df.drop([0]) # Drop header row. PDF is a mess.
this_df = drop_columns_that_dont_split(this_df)
this_df = split(this_df)
this_df = explode(this_df)
# Success: we now have PDF page 15 (fancy, this one has no header row)
# Where is PDF page 16??
df1 = pd.concat([df1, this_df])
this_df = dataframes[2]
this_df = drop_columns_that_dont_split(this_df)
this_df = split(this_df)
this_df = explode(this_df)
# Success: we now have PDF page 17
df1 = pd.concat([df1, this_df]).reset_index(drop=True)
print(df1)
# PDF page 18 begins the second set of tabular data:
df2 = dataframes[3]
df2 = df2.drop([0]) # Drop header row. PDF is a mess.
df2 = drop_columns_that_dont_split(df2)
df2 = split(df2)
# Gah, the PDF has a blank so the list is 1 element short of the length of the others.
# We need to fill that blank with None or explode() is going to explode.
# In a runtime error sort of way, not the way we want. ;)
df2.iat[0, 4].insert(30, None)
df2 = explode(df2)
# PDF page 23
this_df = dataframes[4]
this_df = this_df.drop([1]) # Drop footer row. PDF is a mess.
this_df = drop_columns_that_dont_split(this_df)
this_df = split(this_df)
this_df = explode(this_df)
df2 = pd.concat([df2, this_df]).reset_index(drop=True)
print(df2)
# PDF page 24
# OH DEAR DOG THIS IS A BLANKNESS NIGHTMARE that Camelot above detects absolutely no
# blankness in...
this_df = dataframes[5]
this_df = this_df.drop([0]) # Drop header row. PDF is a mess.
print(this_df)
# The first actual dataframe we want to extract is 4..8 from the messy set of all dataframes extracted above
# df1 = dataframes[4]
# df1 = df1.drop([0]) # Drop header row. PDF is a mess.
# df1 = drop_columns_that_dont_split(df1)
# df1 = split_and_expand(df1)
# print(df1)
# Display the DataFrames
def naively_loop_all_dataframes():
for i, df in enumerate(dataframes):
if i < 4:
continue # PDF tables we don't want
print(f"Table {i}")
print(df)
df = df.drop([0]) # Drop header row. PDF is a mess.
print(df)
print("------ here are the index value counts: --------------------")
print(df.index.value_counts())
print("------ element counts ----------")
# Apply the function to each cell in the DataFrame
element_counts = df.applymap(count_elements)
# Display the DataFrame with element counts
print(element_counts)
print("------ Drop columns ----------------")
df = drop_columns_that_dont_split(df)
print(df)
print("------- split and expand -------------------")
df = split_and_expand(df)
print(df)
break
# con = sqlite3.connect("nsorg.sqlite3")
sqlstr = """
SELECT
CASE WHEN FundingAmount <= 50000 THEN FundingAmount ELSE 0 END,
CASE WHEN FundingAmount > 50000 AND FundingAmount < 1000000 THEN FundingAmount ELSE 0 END,
CASE WHEN FundingAmount >= 1000000 THEN FundingAmount ELSE 0 END
FROM awards
WHERE FundingAmount > 0;
"""
# df10 = pd.read_sql_query(sqlstr, con)
# print(df10.head())