forked from ModelDBRepository/2017403
-
Notifications
You must be signed in to change notification settings - Fork 0
/
RIM_simulation_iclamp.py
142 lines (89 loc) · 3.21 KB
/
RIM_simulation_iclamp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# "Biophysical modeling of the whole-cell dynamics of C. elegans motor and interneurons families"
# M. Nicoletti et al. PloS ONE, 19(3): e0298105.
# https://doi.org/10.1371/journal.pone.0298105
def RIM_simulation_iclamp(gRIM_scaled,s1,s2,ns):
from neuron import h,gui
import numpy
import math
from operator import add
surf=103.34e-8 # surface in cm^2 form neuromorpho RIML
vol=10.94e-12 # total volume
L=math.sqrt(surf/math.pi)
rsoma=L*1e4
cm_uFcm2=gRIM_scaled[8]
soma=h.Section(name="soma")
soma.L=rsoma
soma.diam=rsoma
soma.Ra=100
soma.cm=cm_uFcm2
h.psection(sec=soma)
soma.insert('shl1')
soma.insert('egl2')
soma.insert('irk')
soma.insert('cca1')
soma.insert('unc2')
soma.insert('egl19')
soma.insert('leak')
for seg in soma:
seg.shl1.gbar=gRIM_scaled[0]
seg.egl2.gbar=gRIM_scaled[1]
seg.irk.gbar=gRIM_scaled[2]
seg.cca1.gbar=gRIM_scaled[3]
seg.unc2.gbar=gRIM_scaled[4]
seg.egl19.gbar=gRIM_scaled[5]
seg.leak.gbar=gRIM_scaled[6]
seg.leak.e=gRIM_scaled[7]
seg.eca=60
seg.ek=-80
stim=h.IClamp(soma(0.5))
dir(stim)
stim.delay=5000
stim.amp=10
stim.dur=5000
v_vec = h.Vector()
t_vec = h.Vector() # Time stamp vector
v_vec.record(soma(0.5)._ref_v)
t_vec.record(h._ref_t)
simdur =14000
ref_v=[]
ref_t=[]
num_step=11
for i in numpy.linspace(start=s1, stop=s2, num=ns):
stim.amp=i
h.tstop=simdur
h.dt=0.04
h.finitialize(-60)
h.run()
ref_t_vec=numpy.zeros_like(t_vec)
t_vec.to_python(ref_t_vec)
ref_t.append(ref_t_vec)
ref_v_vec=numpy.zeros_like(v_vec)
v_vec.to_python(ref_v_vec)
ref_v.append(ref_v_vec)
# total current calculation
v=[]
v=numpy.array(list(ref_v))
time1=numpy.array(ref_t)
length=time1.shape
# cut the initial transient
dd=numpy.amax(numpy.where(time1[1,:]<4000))
time=time1[:,dd:length[1]]-4000
volt=v[:, dd:length[1]]
## CALCULATION OF STEADY-STATE CURRENT-VOLATGE RELATION
ind=numpy.where(numpy.logical_and(time[0]>=5990, time[0]<=6010))
ind_max=numpy.amax(ind)
ind_min=numpy.amin(ind)
iv=numpy.mean(volt[:,ind_min:ind_max],axis=1)
# CALCULATION OF PEAK CURRENT-VOLTAGE RELATION (as in Ramot et al 2008)
ind2=numpy.where(numpy.logical_and(time[0]>=1000, time[0]<=1100))
ind2_max=numpy.amax(ind2)
ind2_min=numpy.amin(ind2)
iv_peak=numpy.amax(volt[:,ind2_min:ind2_max])
iv_peak=[]
for j in range(ns):
if j<=3:
peak=numpy.amin(volt[j,ind2_min:ind2_max])
else:
peak=numpy.amax(volt[j,ind2_min:ind2_max])
iv_peak.append(peak)
return volt, time, iv_peak, iv