forked from ModelDBRepository/2017403
-
Notifications
You must be signed in to change notification settings - Fork 0
/
slo2egl19.mod
183 lines (147 loc) · 3.54 KB
/
slo2egl19.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
TITLE slo2egl19
: slo2 channels coupled with egl19 calcium channels (1:1 stoichiometry)
: From Nicoletti et al. PloS One 2019 (https://doi.org/10.1371/journal.pone.0218738)
UNITS {
(mA) = (milliamp)
(S) = (siemens)
(mV) = (millivolt)
(pS) = (picosiemens)
(molar)=(1/liter)
(uM) = (micromolar)
(um) = (micron)
FARADAY = (faraday) (coulombs)
}
NEURON {
SUFFIX slo2egl19
USEION k READ ek WRITE ik
USEION ca READ eca
RANGE gbar, g, curr
GLOBAL minf,tslo2, alpha1,beta1
EXTERNAL megl19_egl19, hegl19_egl19
}
PARAMETER{
v (mV)
cai (uM)
bkg=0.05 (uM)
ek (mV)
eca (mV)
minf_egl19
hinf_egl19
mtau_egl192
htau_egl192
megl19_egl19
hegl19_egl19
celsius (degC)
gbar=.1 (S/cm2)
wom1=0.896395 (/ms)
wyx1=0.019405 (/mV)
kyx1=3294.553404 (uM)
nyx1=0.000010 (1)
wop1=0.026719 (/ms)
wxy1=-0.024123 (/mV)
kxy1=93.449423 (/ms)
nxy1=1.835067 (1)
r=13e-9 (nm)
d=250e-12 (um2/s)
kb=500e6 (1/(M-s)
b=30e-6 (M)
gsc=40e-12 (pS)
pi=3.14
va_egl19=5.6 (mV)
ka_egl19=7.50 (mV)
stm19=10 (mV)
sth19=10 (mV)
p1hegl19=1.4314
p2hegl19=24.8573 (mV)
p3hegl19=11.9541 (mV)
p4hegl19=0.1427
p5hegl19=5.9589
p6hegl19=-10.5428 (mV)
p7hegl19=8.0552 (mV)
p8hegl19=0.6038
pdg1=2.3359 (ms)
pdg2=2.9324 (ms)
pdg3=5.2357 (mV)
pdg4=6.0 (mV)
pdg5=1.8739 (ms)
pdg6=1.3930 (mV)
pdg7=30.0 (mV)
stau19=10 (mV)
pds1=0.4
pds2=0.55
pds3=81.1179 (ms)
pds4=-22.9723 (mV)
pds5=5 (mV)
pds6=43.0937 (ms)
pds7=0.9
pds8=40.4885 (ms)
pds9=28.7251 (mV)
pds10=3.7125 (mV)
pds11=0
shiftdps=10
ctm19=1
}
ASSIGNED{
ik (mA/cm2)
g (S/cm2)
curr (mA/cm2)
minf
tslo2
alpha1
beta1
}
STATE {
m
}
BREAKPOINT {
SOLVE states METHOD cnexp
g=gbar*m*hegl19_egl19
curr=gbar*m*hegl19_egl19*(v-ek)
ik = gbar*m*hegl19_egl19*(v-ek)
}
INITIAL {
rates(calcium(v), v)
m=minf
}
DERIVATIVE states {
rates(calcium(v), v)
m' = (minf - m)/tslo2
}
PROCEDURE rates(calcium(v),v (mV)){
alpha1=actegl19(v)/tactegl19(v)
beta1=(1/tactegl19(v))-alpha1
minf=(megl19_egl19*kop2(calcium(v),v)*(alpha1+beta1+kcm2(v)))/((kop2(calcium(v),v)+kom2(calcium(v),v))*(kcm2(v)+alpha1)+(beta1*kcm2(v)))
tslo2=((alpha1+beta1+kcm2(v))/((kop2(calcium(v),v)+kom2(calcium(v),v))*(kcm2(v)+alpha1)+(beta1*kcm2(v))))
}
FUNCTION kcm2(v (mV)){
kcm2=wom1*exp(-wyx1*v)*(1/(1+((bkg/kyx1)^nyx1)))
}
FUNCTION kom2(calcium(v),v (mV)){
kom2=wom1*exp(-wyx1*v)*(1/(1+pow(calcium(v)/kyx1,nyx1)))
}
FUNCTION kop2(calcium(v),v (mV)){
kop2=wop1*exp(-wxy1*v)*(1/(1+pow(kxy1/calcium(v),nxy1)))
}
FUNCTION calcium(v (mV)){
calcium=(((fabs(gsc*(v-eca)*1e-3)/(8*pi*r*d*FARADAY))*exp(-r/sqrt(d/(kb*b))))*1e6*1e-3)+bkg
}
FUNCTION actegl19(v (mV)) {
UNITSOFF
actegl19=1/(1+exp(-(v-va_egl19+stm19)/ka_egl19))
UNITSON
}
FUNCTION inactegl19(m (mV)){
UNITSOFF
inactegl19= ((p1hegl19/(1+exp(-(v-p2hegl19+sth19)/p3hegl19))+p4hegl19)*(p5hegl19/(1+exp((v-p6hegl19+sth19)/p7hegl19))+p8hegl19))
UNITSON
}
FUNCTION tactegl19(m (mV)){
UNITSOFF
tactegl19= (pdg1+(pdg2*exp(-(v-pdg3+stau19)^2/(pdg4)^2))+(pdg5*exp(-(v-pdg6+stau19)^2/(pdg7)^2)))*ctm19
UNITSON
}
FUNCTION tinactegl19(v(mV)){
UNITSOFF
tinactegl19= pds1*(((pds2*pds3)/(1+exp((v-pds4+shiftdps)/pds5)))+pds6+((pds7*pds8)/(1+exp((v-pds9+shiftdps)/pds10)))+pds11)
UNITSON
}